Как рассчитать диаметр трубы для отопления

Содержание

Сравнение однотрубной и двухтрубной систем

Мы уже выяснили, как рассчитать трубы для отопления, и какой диаметр нужен для обоих видов систем. Для закрытых контуров, при площади помещения от 120 м2, этот показатель составляет 32 мм для полипропилена. При этом условный проход для изделий с номинальным давление 20 и 25 атмосфер составляет 21,2 мм. Для изделий с номинальным давлением 10 атмосфер условный проход составляет 20,4 мм, а наружный диаметр 25 мм.

  • КПД – однозначно, «попутки» эффективнее обогревают помещение, чем однотрубные;
  • экономия средств – все, что можно сэкономить на «Ленинградке» это какой-то отрезок контура и все.

Количество тройников будет одинаковым, кранов тоже, а вот переходников, возможно, потребуется больше. Представьте контур, от которого с небольшим промежутком отходит два патрубка. Один из них идет на вход в радиатор, а второй возвращает теплоноситель обратно в систему. Получается что отрезок между патрубками – это байпас. Чтобы циркуляция в батарее была лучше, байпас нужно сделать меньшего диаметра, чем основной контур отопления. Из этого следует, что потребуется еще пара единиц фурнитуры. Получается, что меньше тратим денег на трубы и больше на фурнитуру, в итоге экономии никакой, при этом КПД ниже.

В итоге, из этого можно сделать вывод, что рассказы о том, какая хорошая и дешевая однотрубная система отопления просто несостоятельны.

При двухтрубной разводке самое главное не ошибиться с выбором диаметра трубы. Иначе прогрев будет не равномерным, а то и вообще будет отсутствовать на некоторых отопительных приборах. Данный материал построен исключительно на собственном опыте работы. Если его придерживаться, то всё будет работать.

Сначала определим основные термины:

подающая труба — труба любого диаметра, по которой нагретый теплоноситель поступает к радиаторам, теплому полу, конвекторам и т.п., (См. также: Двухтрубная система отопления частного дома) обратная труба — труба любого диаметра, по которой теплоноситель возвращается к котлу, в правильной двухтрубной системе диаметры подающей и обратной трубы равны в одинаковых точках. плечо — отвод трубы через тройник в дополнительном направлении, плечи могут быть и у уже существующего плеча. Их всегда два, по количеству отводов у тройника.

У большинства бытовых котлов диаметр подающего и обратного патрубков равен 1-му дюйму (d25) или дюйму с четвертью (d32). Есть котлы у которых диаметр выходов составляет три четверти (d20). С такими котлами лучше строить однотрубную схему. Давайте рассмотрим линейку диметров. Она выглядит следующим образом: d32, d25, d20, d16. Главное правило формирования диаметра трубы: после каждого тройника диаметр уменьшается на одну позицию при проходе от котла к последнему радиатору. Например: у вас от котла идет труба d32. На первый радиатор у вас отходит d16. Дальше идет уже d25. На второй радиатор отходит d16. Дальше идет d20. На третий радиатор отходит d16. И на последний идет d16. Мы видим, что на трубе «висит» 4 радиатора. (См. также: Современное водяное отопление)

А что делать если радиаторов больше? Очень просто. Разводим трубу на два плеча. Из котла выходит d32. Через тройник распускаем две трубы, но уже d25. От каждой d25 отводим по d16 на радиаторы, дальше идет d20. От каждой d20 отводим d16 еще на два радиатора, дальше идет d16 еще на два радиатора. Как видите, у нас уже шесть радиаторов. Так же, совершенно достоверно могу сказать, что если сделать от d16 отвод d16 на два радиатора и кинуть дальше d16 еще на два радиатора, то такая система будет работать. Поэтому у нас уже вписывается восемь радиаторов.

Рассмотренная система будет работать без балансировки. Если же будут какие либо отклонения от данного принципа, то вам необходимо будет балансировать радиаторы, то есть при помощи вентилей ограничивать поток на наиболее горячих для того, чтобы тепло доходило до менее нагретых. Чем больше у вас радиаторов, тем менее эффективно работает система. Восемь — наиболее оптимальный вариант.

Диаметр труб к каждой системе отопления подбирался практическим путем. К выбору диаметра нужно отнестись максимально серьезно, так как качественный подбор позволит при необходимости заливать стяжку, обеспечит проход через стены, не затруднит установку циркуляционных насосов и прочее.

Система отопления своими руками

Выполнить расчёт контура отопления частного дома без оценки теплопотерь окружающих конструкций невозможно.

В России, как правило, долгие холодные зимы, здания теряют тепло из-за перепадов температур внутри и снаружи помещений. Чем больше площадь дома, ограждающих и сквозных конструкций (кровля, окна, двери), тем большее значение теплопотерь выходит. Существенное влияние оказывает материал и толщина стен, наличие или отсутствие теплоизоляции.

Например, стены из дерева и газобетона обладают намного меньшим показателем теплопроводности, чем кирпич. Материалы с максимальными показателями теплового сопротивления используются в качестве изоляции (минеральная вата, пенополистерол).

Перед созданием отопительной системы дома, нужно тщательно продумать все организационные и технические моменты, чтобы сразу после постройки «коробки», приступить к финальной фазе строительства, а не откладывать на долгие месяцы долгожданное заселение.

Отопление в частном доме базируется на «трех слонах»:

  • нагревательный элемент (котел);
  • система труб;
  • радиаторы.

Какой котел лучше выбрать для дома?

Котлы отопления являются главным компонентом всей системы. Именно они будут обеспечивать тепло вашего дома, поэтому к их выбору нужно относиться особенно внимательно. По типу питания их подразделяют на:

  • электрические;
  • твердотопливные;
  • жидкотопливные;
  • газовые.

Каждый из них имеет ряд существенных преимуществ и недостатков.

  1. Электрические котлы не завоевали большой популярности, в первую очередь из-за достаточно большой стоимости и дороговизне в обслуживании. Тарифы на электроэнергию оставляют желать лучшего, есть вероятность разрыва линий электропередач, в результате которого ваш дом может остаться без отопления.
  2. Твердотопливныекотлы  часто используются в глухих деревнях и поселках, где нет централизованных коммуникационных сетей. Они нагревают воду за счет дров, брикетов и угля. Важным недостатком является необходимость постоянного контроля горючего, в случае, если топливо прогорит, и вы не успеете пополнить запасы, дом перестанет отапливаться. В современных моделях эта проблема решена, за счет автоматического податчика, но цена таких устройств неимоверно высокая.
  3. Жидкотопливные котлы, в подавляющем большинстве случаев, работают на дизельном топливе. Они обладают отличной производительностью из-за высокого КПД горючего, но большая цена на сырье и потребность резервуаров с дизелем, ограничивает многих покупателей.
  4. Самым оптимальным решением для загородного дома являются газовые котлы. Из-за небольшого размера, низкой цены на газ и высокой теплоотдачи они завоевали доверие большей части населения.

Как выбрать трубы для отопления?

Магистрали отопления снабжают все обогревательные устройства в доме. В зависимости от материала изготовления, они подразделяются на:

  • металлические;
  • металлопластиковые;
  • пластиковые.

Трубы из металла наиболее сложные в монтаже (из-за необходимости сварки швов), подвержены коррозии, обладают большим весом и дорого стоят. Преимуществами является высокая прочность, устойчивость к перепадам температур и способность выдерживать большие давления. Они используются в многоквартирных домах, в частном строительстве применять их нецелесообразно.

Полимерные трубы из металлопластика и полипропилена очень схожи по своим параметрам. Легкость материала, пластичность, отсутствие коррозии, подавление шумов и, конечно же, низкая цена. Единственным отличием первых, является наличие алюминиевой прослойки между двумя слоями пластика, из-за которого увеличивается показатель теплопроводности. Поэтому трубы из металлопластика применяются для отопления, а пластиковые для водоснабжения.

Получив результаты

В ходе расчетов определяется оптимальный размер трубы. Однако следует учитывать, что окончательное проектирование должно выполняться профессионалам и с применением значительно более сложных формул и схем. Учитываются и количество колен, способ подключения, оптимизация по затратам, экономической целесообразности и даже эстетического вида. При выборе диаметра учитывается разделение труб на основные и подводящие, наличие запорной арматуры и регулирующих приборов, с помощью которых настраивается обогрев в отдельных комнатах.

Частая ошибка старых систем отопления с естественной циркуляцией связана с разводкой труб. Колена формировались слишком угловатым и с заужением сечения, что приводит к существенному повышению гидродинамического сопротивления. Для снижения сопротивления необходимо соблюсти правильный радиус разворота (для стальных труб это 2-2,5D) и использовать трубогиб для сохранения профиля труб.

Подбор диаметра труб по заданной скорости теплоносителя.

Подбор диаметра труб по скорости теплоносителя. (режим 80/60)

Приведенное выше описание очень похоже на то, что происходит в двухтрубной тупиковой системе отопления.

В системе отопления есть свой завод, который производит тепло — это котел. Роль дорог играют трубопроводы. Теплоноситель — чаще вода, «везет» тепло к радиаторам, где оно расходуется, восполняя тепловые потери помещения. «Разгрузившаяся» остывшая вода вновь возвращается в котел, чтобы заправиться теплом. Процесс происходит постоянно.

Диаметр труб для системы отопления подбирается по тому же самому принципу, что и ширина дорог из нашего примера. Чем больше требуется передать тепла, которое несет вода, тем больше должен быть диаметр трубы. По мере уменьшения потребности в тепле на каждом отдельном участке, диаметр труб уменьшается.

Какое количество тепла может пропустить та или иная труба?

Опуская подробные объяснения и расчеты по известным формулам, скажем лишь, что одним из распространенных способов определения диаметров труб является задача скорости, с которой будет двигаться теплоноситель внутри трубы.

С одной стороны, скорость теплоносителя не должна быть меньше 0,25 м/сек. При меньших скоростях образуются воздушные пробки, препятствующие циркуляции теплоносителя.

Подбор диаметра труб по скорости теплоносителя. (режим 75/60)

А с другой стороны, она должна быть не выше 1,5 м/сек. При больших скоростях возникает шум от двигающегося внутри труб теплоносителя.

Практикой и расчетами установлено, что скорость теплоносителя, лежащая в пределах 0,3 — 0,7 м/сек является самой оптимальной с точки зрения энергоэффективности и затрат на материал.

В таблицах приведены скорости движения воды по трубопроводу в зависимости от тепловой нагрузки и диаметра труб.

В левом столбце вы видите тепловую нагрузку. Вверху — наружные диаметры полипропиленовых труб. В самой таблице проставлены значения скорости воды, двигающейся по трубам.

Красным цветом обозначены рекомендованные скорости для конкретного диаметра труб по заданной тепловой нагрузке.

Рассмотрим использование данных из таблицы на примере.

Пример подбора диаметра труб.

Предположим, у нас есть частный двухэтажный дом общей площадью 380 м 2 с тепловыми потерями 38000 Вт.

Также расчетами установлено, что на первом этаже теплопотери составляют 20000 Вт, а на втором — 18000 Вт.

Тепловой режим взят 80/60. (80 о С — подача; 60 о С — обратка)

В качестве схемы мы избрали двухтрубную поэтажную тупиковую систему отопления, разделенную на каждом этаже на две равнонагруженные ветки (направление в два крыла).

Левая ветка первого и второго этажа

Правая ветка первого и второго этажа

Какой нужен диаметр труб основной подающей и обратной магистрали, подключенной к котлу?

Через нее проходит весь поток воды, предназначенный для обогрева всего дома. А это 38000 Вт.

Находим в таблице 38000 Вт и по горизонтали двигаемся к красному полю. Затем поднимаемся по вертикали и находим нужный диаметр трубы.

Как видим, для нашего случая подходят три диаметра трубы: 40, 50, 63. Какой выбрать? В данном случае, логично, что 40, потому что дешевле. Зачем нам для шести машин строить восьми полосную дорогу?

Мы дошли до первого разветвления. Часть тепла 20000 Вт должна пойти по трубопроводу на обогрев 1 этажа, а другая — 18000 Вт по стоякам поднимется на второй этаж. Какие трубы будут нужны нам теперь?

Смотрим по таблице скорость теплоносителя и соответствующие диаметры труб.

Как видим, нужно использовать 32 трубу и для первого и для второго этажа.

В согласии с данными из примера на каждом этаже трубы разделяются на две равнозначных по тепловой нагрузке ветки.

Для первого этажа каждая из веток несет тепло, равное 20000 / 2 = 10000 Вт.

Для второго этажа — 18000 / 2 = 9000 Вт.

Какие трубы будем использовать для каждой ветки? Снова смотрим таблицу.

Итак, были выбраны трубы диаметром 25 мм.

Что дальше? Наконец, на пути каждой ветки начали встречаться радиаторы, которые стали постепенно снимать тепловую нагрузку с веток.

Глядя в таблицу, мы видим, что как только тепловая нагрузка упадет до 5000 Вт, можно будет перейти на трубы диаметром 20 мм и дальше оставшуюся разводку можно сделать этими трубами.

На практике переход на трубы диаметром 20 мм мы делаем при тепловой нагрузке 3000 Вт.

Подбор диаметра труб отопления — Teplopraktik

Диаметр труб отопления зависит от того какой объем теплоносителя будет проходить через них. Очевидно, что на главном подающем трубопроводе, идущем от отопительного котла, диаметр будет больше, на ветке с тремя радиаторами он будет еще меньше, а на конечном радиаторе он будет самым маленьким. Соответственно диаметр трубы будет зависеть от общей тепловой мощности радиаторов, который питает данный трубопровод.

Кроме того диаметр трубопровода зависит от скорости движения теплоносителя в системе и от перепада температур подача/обратка. Чем выше этот перепад, тем меньше требуется диаметр трубопровода. Стандартный перепад температур – 20°С. В более комфортных системах этот перепад меньше – 10°С.

Отопительная система с циркуляционным насосом характеризуется высокой скоростью теплоносителя, система же с естественной циркуляцией обладает низкой скоростью, поэтому это обязательно надо учитывать при подборе труб отопления. Не стоит закладывать в расчет трубопроводов слишком большую скорость движения воды в трубах, т.к. это создаст различные неприятные шумы и журчание в трубах. При слишком низкой скорости же возникает риск образования воздушных пробок в системе. Скорость движения в трубах должна быть в пределах 0,4 – 0,6 м/с. Самотечная система характеризуется значительно более низкой скоростью теплоносителя, поэтому диаметр труб нужно выбирать больше.

Поэтому ниже мы укажем таблицы подбора диаметра труб для различных систем с указанными параметрами. В таблице используется подбор диаметра труб из различных материалов. Стальные трубы ВГП имеют обозначение по внутреннему диаметру, тогда как полипропиленовые, металлопластиковые и трубы из сшитого полиэтилена имеют обозначение по наружному диаметру. Это учтено в таблице подбора диаметров трубопроводов.

Тепловая нагрузка, кВт Необходимый внутренний диаметр трубы, мм Подбор трубы для необходимого внутреннего диаметра:
ВГП стальные Полипропилен Сшитый полиэтилен
50 39 1,5 дюйма (40мм) 50 50
40 35 1,5 дюйма (40мм) 50 50
30 30 1,25 дюйма (32мм), дюйм с четвертью) 40 40
20 25 1 дюйм (25мм) 32 32
15 21 1 дюйм (25мм) 32 32
12 19 3/4 дюйма (20мм) 25 25
10 17 3/4 дюйма (20мм) 25 25
8 16 3/4 дюйма (20мм) 25 25
6 14 1/2 дюйма (15мм) 20 20
5 12 1/2 дюйма (15мм) 20 20
4 11 1/2 дюйма (15мм) 20 20
3 10 3/8 дюйма (10мм) 16 16
2 8 3/8 дюйма (10мм) 16 16
1 6 3/8 дюйма (10мм) 16 16
Тепловая нагрузка, кВт Необходимый внутренний диаметр трубы, мм Подбор трубы для необходимого внутреннего диаметра:
ВГП стальные Полипропилен Сшитый полиэтилен
50 55 2 дюйма (50мм) 63 63
40 48 2 дюйма (50мм) 63 63
30 43 2 дюйма (50мм), либо 1,5 дюйма (40мм) 63 63
20 35 1,5 дюйма (40мм) 50 50
15 30 1,25 дюйма (32мм) 40 40
12 27 1,25 дюйма (32мм) 40 40
10 25 1 дюйм (25мм) 32 32
8 22 1 дюйм (25мм) 32 32
6 19 3/4 дюйма (20мм) 25 25
5 17 3/4 дюйма (20мм) 25 25
4 16 1/2 дюйма (15мм) 20 20
3 13 1/2 дюйма (15мм) 20 20
2 11 1/2 дюйма (15мм) 16 16
1 8 1/2 дюйма (15мм) 16 16
Тепловая нагрузка, кВт Необходимый внутренний диаметр трубы, мм Подбор трубы для необходимого внутреннего диаметра:
ВГП стальные Полипропилен Сшитый полиэтилен
30 48 2 дюйма (50мм) 63 63
20 39 1,5 дюйма (40мм) 50 50
15 34 1,5 дюйма (40мм) 50 50
12 30 1,25 дюйма (32мм), (дюйм с четвертью) 40 40
10 28 1,25 дюйма (32мм), (дюйм с четвертью) 40 40
8 25 1 дюйм (25мм) 32 32
6 21 3/4 дюйма (20мм) 25 25
5 19 3/4 дюйма (20мм) 25 25
4 17 3/4 дюйма (20мм) 25 25
3 15 3/4 дюйма (20мм)) 25 25
2 12 1/2 дюйма (15мм) 20 20
1 10 1/2 дюйма (15мм) 20 20

Пример использования: двухтрубная система с циркуляционным насосом, общая мощность 18 кВт.

Разводка выполнена полипропиленовой трубой, условное обозначение — ПП.

Как видим из схемы — вначале из котла выходит полипропиленовая труба, диаметром 40мм, внутренний просвет у нее 25мм, что соответствует металлической ВГП трубе в 1 дюйм (25мм). Далее идет отвод на бойлер (4 кВт) и теплые полы (2 кВт) двух ПП труб, диаметром 16мм. После этого часть теплоносителя отделилась, поэтому нет необходимости в такой толстой трубе. На отопление 1-ого и 2-ого этажей уже пойдет более тонкая труба — 32мм, она пойдет до первого тройника. На тройнике отделяется ветка на 1-ый этаж, диаметром 25мм, и на 2-ой этаж, также диаметром 25мм. К конечным радиаторам уже подходит полипропиленовая труба диаметром 16мм. И на 3-х последних радиаторах также идет заужение подающей трубы до 16мм.

В однотрубной системе, в отличие от двухтрубной по одному трубопроводу подается весь теплоноситель системы. Поэтому в такой системе весь трубопровод (после ответвления трубы на бойлер и теплый пол) будет диаметром 32мм, а к отдельным радиаторам от основного трубопровода будут подходить трубы 16мм.

teplopraktik.ru

Сложности выбора диаметра трубопровода

При выборе труб учитывается внутренний и внешний диаметр, а также материал изготовления

Основная сложность подбора диаметра заключается в особенностях планирования магистрали. Учитываются:

  • наружный показатель (медь и пластик) – поверхность арматуры может отдавать тепловые потоки в помещение;
  • внутренний диаметр (сталь и чугун) – позволяет рассчитать пропускные характеристики отдельного участка;
  • условные параметры – округленное значение в дюймах, нужно для теоретических подсчетов.

Зависимость размера от скорости теплоносителя

Выбор показателя диаметра определит пропускную способность магистрали с учетом рекомендованной скорости 0,4-0,6 м/сек. При этом учитывается, что при скорости менее 0,2 м/сек образуются воздушные пробки, а при скорости более 0,7 м/сек есть риск повышения давления теплоносителя.

Для исключения теплопотерь и увеличения скорости теплоносителя устанавливается насос

Насколько равномерно распределяется тепловая энергия по контуру и определяет диаметр патрубков. Чем он меньше, тем быстрее движется вода, но у скоростных показателей есть ограничение:

  • до 0,25 м/сек – в противном случае есть риски появления воздушных пробок и невозможности их удаления спускниками, теплопотерь в комнате;
  • не больше 1,5 м/сек – теплоноситель в процессе циркуляции будет шуметь;
  • 0,36-0,7 м/сек – эталонная величина скорости теплоносителя.

Параметры объема теплоносителя

Для систем с естественной циркуляцией лучше выбрать арматуру с увеличенным диаметром. Это снизит потери тепла в процессе трения воды о внутреннюю поверхность. При использовании данного приема следует учесть, что при увеличении объема воды повышаются затраты энергии на ее нагревание.

Гидравлические потери

Явление возникает, если трубопровод сделан из пластиковых изделий разного диаметра. Причина заключается в разности давлений на местах стыков и увеличению гидравлических потерь.

Пропускная способность водопроводной трубы

Водопроводные трубы в доме используются чаще всего. А так как на них идёт большая нагрузка, то и расчет пропускной способности водопроводной магистрали становится важным условием надежной эксплуатации.

Проходимость трубы в зависимости от диаметра

Диаметр – не самый важный параметр при расчете проходимости трубы, однако тоже влияет на ее значение. Чем больше внутренний диаметр трубы, тем выше проходимость, а также ниже шанс появления засоров и пробок. Однако помимо диаметра нужно учитывать коэффициент трения воды о стенки трубы (табличное значение для каждого материала), протяженность магистрали и разницу давлений жидкости на входе и выходе. Кроме того, на проходимость будет сильно влиять число колен и фитингов в трубопроводе.

Таблица пропускной способности труб по температуре теплоносителя

Чем выше температура в трубе, тем ниже её пропускная способность, так как вода расширяется и тем самым создаёт дополнительное трение

Для водопровода это не важно, а в отопительных системах является ключевым параметром

Существует таблица для расчетов по теплоте и теплоносителю.

Таблица 5. Пропускная способность трубы в зависимости от теплоносителя и отдаваемой теплоты
Диаметр трубы, мм Пропускная способность
По теплоте По теплоносителю
Вода Пар Вода Пар
Гкал/ч т/ч
15 0,011 0,005 0,182 0,009
25 0,039 0,018 0,650 0,033
38 0,11 0,05 1,82 0,091
50 0,24 0,11 4,00 0,20
75 0,72 0,33 12,0 0,60
100 1,51 0,69 25,0 1,25
125 2,70 1,24 45,0 2,25
150 4,36 2,00 72,8 3,64
200 9,23 4,24 154 7,70
250 16,6 7,60 276 13,8
300 26,6 12,2 444 22,2
350 40,3 18,5 672 33,6
400 56,5 26,0 940 47,0
450 68,3 36,0 1310 65,5
500 103 47,4 1730 86,5
600 167 76,5 2780 139
700 250 115 4160 208
800 354 162 5900 295
900 633 291 10500 525
1000 1020 470 17100 855

Таблица пропускной способности труб в зависимости от давления теплоносителя

Существует таблица, описывающая пропускную способность труб в зависимости от давления.

Таблица 6. Пропускная способность трубы в зависимости от давления транспортируемой жидкости
Расход Пропускная способность
Ду трубы 15 мм 20 мм 25 мм 32 мм 40 мм 50 мм 65 мм 80 мм 100 мм
Па/м — мбар/м меньше 0,15 м/с 0,15 м/с 0,3 м/с
90,0 — 0,900 173 403 745 1627 2488 4716 9612 14940 30240
92,5 — 0,925 176 407 756 1652 2524 4788 9756 15156 30672
95,0 — 0,950 176 414 767 1678 2560 4860 9900 15372 31104
97,5 — 0,975 180 421 778 1699 2596 4932 10044 15552 31500
100,0 — 1,000 184 425 788 1724 2632 5004 10152 15768 31932
120,0 — 1,200 202 472 871 1897 2898 5508 11196 17352 35100
140,0 — 1,400 220 511 943 2059 3143 5976 12132 18792 38160
160,0 — 1,600 234 547 1015 2210 3373 6408 12996 20160 40680
180,0 — 1,800 252 583 1080 2354 3589 6804 13824 21420 43200
200,0 — 2,000 266 619 1151 2486 3780 7200 14580 22644 45720
220,0 — 2,200 281 652 1202 2617 3996 7560 15336 23760 47880
240,0 — 2,400 288 680 1256 2740 4176 7920 16056 24876 50400
260,0 — 2,600 306 713 1310 2855 4356 8244 16740 25920 52200
280,0 — 2,800 317 742 1364 2970 4356 8566 17338 26928 54360
300,0 — 3,000 331 767 1415 3076 4680 8892 18000 27900 56160

Таблица пропускной способности трубы в зависимости от диаметра (по Шевелеву)

Таблицы Ф.А и А. Ф. Шевелевых являются одним из самых точных табличных методов расчета пропускной способности водопровода. Кроме того, они содержат все нужные формулы расчета для каждого конкретного материала. Это объемный информативный материал, используемый инженерами-гидравликами чаще всего.

В таблицах учитываются:

  1. диаметры трубы – внутренний и наружный;
  2. толщина стенки;
  3. срок эксплуатации водопровода;
  4. длина магистрали;
  5. назначение труб.

Расчет отопительного коллектора

Чтобы обеспечить равновесие и устойчивую работу отопительной системы, все ее элементы должны соответствовать друг к другу по своей пропускной способности. Последняя зависит от правильно подобранного сечения труб.

На этом принципе основан расчет коллектора. Он должен иметь величину поперечного сечения, равную или допустимо большую суммы площадей сечений всех отводящих веток. Размер сечения сборной гребенки должен быть не меньше суммы площадей подводящих трубопроводов.

Это условие описывается данной формулой:

S = S, + S,, + S,,, + … + Sn

Где:

  • S — площадь сечения коллектора или гребенки;
  • S, … — Sn — площади сечений исходящих или входящих веток.

Формула расчета площади сечения

За основу берется формула вычисления площади круга, а в данном случае — сечения коллектора (гребенки). Сумма площадей сечений отходящих труб и дает нужный результат — величину отопительного коллектора.

Sколл = π × Dколл²/4, тогда формула расчета принимает вид:

π × Dколл²/4 = π × d,²/4 + π × d,,²/4 + π × d,,,²/4 + …+ π × dn²/4,

где:

  • Dколл — диаметр коллектора;
  • π — число Пи;
  • d, — dn – внутренние диаметры отводящих веток.

Чтобы упростить формулу, надо сократить число пи и взять все под корень квадратный:

Dколл = 2 × √ (d,²/4 + d,,²/4 + d,,,²/4 +…+dn²/4).

По этой формуле можно рассчитать коллектор любой сложности и конфигурации. В случае, если все отходящие ветки отопления имеют одинаковый диаметр, формула принимает следующий вид:

Dколл = 2 × √ (dобщ²/4 × N),

где:

  • N — количество отводящих от гребенки труб;
  • dобщ – диаметр каждой отводящей трубы.

Если при расчете получается дробное число, его следует округлять в большую сторону. Это нужно для того, чтобы не произошло заужение сечения коллектора и снижение мощности системы.

Дополнительные требования к конструкции коллектора

При расчете всех параметров коллектора должны выполняться два условия: расстояние между входной и выходной группами веток равно шести диаметрам, а отводы отопительных контуров удалены друг от друга на три размера.

Схема подключения коллектора в систему отопления коттеджа.