Правильное заземление в частном доме, схемы, устройство, монтаж, подключение

Удельное сопротивление грунта и расчёт электродов

Передача электрического потенциала литосфере происходит со всей поверхности металлических электродов через металлизированные частицы почвы и содержащуюся в грунте влагу. Учитываться должно всё: от шероховатости поверхности металла до пористости грунта и плотности посадки в нём стальных заземлителей.

Геоморфологический профиль и таблица удельных сопротивлений грунтов — вот что берётся за основу расчёта сопротивления распространению тока через основные заземлители. Рекомендуется пользоваться пособием «Нормы устройства сетей заземления» за авторством Р.Н. Карякина, где есть исчерпывающая информация для вычисления нужных параметров, а также описана техника использования естественных заземлителей (обсадок скважин, свай или трубопроводов).

В реальности подробный расчёт выполняется редко, обычно исходные данные принимаются худшими из возможных для конкретных условий размещения. Требуемые характеристики достигаются увеличением либо длины электродов (что более предпочтительно), либо их числа. Запасом прочности обеспечивается длительный срок эксплуатации контура: покрываясь ржавчиной, электроды сильно теряют в проводимости, поэтому к ним периодически добивают новые.

Второй вопрос — общая площадь поверхности. В качестве основных заземлителей следует использовать угловую сталь, тавр или двутавр — изделия с сечением незамкнутой формы, контактирующие с грунтом всеми сторонами. Сопротивление одиночного заземлителя или его участка определяется как удельное сопротивление грунта, его окружающего, делённое на π — кратное значение основного линейного размера (для вертикально стержня это его длина).

Результат нужно умножить на безразмерный коэффициент формы (для вертикального стержня это половина натурального логарифма от четырёхкратной длины, поделённая на периметр сечения). Для примера, вертикальный электрод длиной 2,5 метра из угловой стали 50х50 мм коэффициент составит почти 1,25, сопротивление растеканию (при залегании заземлителей целиком в суглинке) составит 8,3 Ом.

Общее сопротивление вертикальных заземлителей описывается как сумма их обратных значений:

1 / R = 1 / R1 + 1 / R2 + … + 1 / Rn

Таким образом, для достижения нормативного значения в 4–6 Ом потребуется не менее двух электродов по 2,5 метра, по аналогии можно рассчитать варианты с другим подходящим числом или длиной заземлителей.

Распространенные ошибки

Возможность присоединять заземляющий провод к металлическим конструкциям в земле может иметь плохие последствия, если не учитывать ограничений.

Опасно заземление в таких случаях:

  • кабель пристыковывают к водопроводной системе или трубам отопления — это опасно для хозяев дома и соседей;
  • нельзя соединять заземляющую жилу с нулевым контактом в розетке — если нуль отгорит, высокое напряжение будет определяться на коробках всех электрических приборов;
  • не рекомендуют подключать больше одной жилы к клемме РЕ — при потерях электричества оно пойдет не в грунт по защитному заземлителю, а перейдет на бытовую технику, подключенную другим проводом.

Защитное заземление в электроустановках. Назначение, принцип действия, область применения.

Защитное заземление – преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус и по другим причинам (индуктивное влияние соседних токоведущих частей, вынос потенциала, разряд молнии и т.п.).

Защитное заземление предназначено для устранения опасности поражения электрическим током в случае прикосновения к корпусу электроустановки и другим нетоковедущим металлическим частям, оказавшимся под напряжением вследствие замыкания на корпус и по другим причинам.

Область применения защитного заземления – электроустановки по напряжением до 1000 В в сетях с изолированной централью и выше 1000В в сетях с любым режимом нейтрали источника тока (как с изолированной, так и с глухозаземленной).

В соответствии с требованиями ГОСТ 12.1.030-81 защитное заземление электроустановки следует выполнять:

при номинальном напряжении 380В и выше переменного тока и 440В и выше постоянного тока во всех случаях;

при номинальных напряжениях от 42В до 380В переменного и от 110В до 440В постоянного тока при работах в условиях с повышенной опасностью, особо опасных и наружных установках.

Примечание: Характеристики этих условий приведены в обязательном приложении к ГОСТ 12.1.013-78 .

Защитному заземлению подвергают металлические части электроустановок и оборудования, доступные для прикосновения человека и не имеющие других видов защиты, например, корпуса электрических машин, трансформаторов, светильников, каркасы распределительных щитов, металлические трубы и оболочки электропроводок и т.д.

Принцип действия защитного заземления в электроустановках напряжением до 1000В:

снижение напряжения прикосновения на заземленном корпусе при замыкание на него питающего напряжения.

Это достигается за счет малого сопротивления заземляющего устройства (Ом). Ток течет по пути наименьшего сопротивления, а т.к. сопротивление человека (кОм), то он пойдет в заземлитель или его эквивалент.

Принципиальная схема защитного заземления приведена на рис.:

(а) – трехфазной сети; (б) – двухпроводных сетей переменного и (в) – постоянного тока.

Примечание: предельно допустимые значения напряжений прикосновения и токов через тело человека с учетом длительности воздействия приведены в ГОСТ 12.1.038-82 .

Заземление осуществляется с помощью специальных устройств – заземлителей – это совокупность заземлителя – металлических проводников, соприкасающихся с землей, и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.

В зависимости от взаимного расположения заземлителей и заземляемого оборудования различают выносные и контурные заземляющие устройства. Первые из них характеризуются тем, что заземлители вынесены за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточены на некоторой части этой площадки (рис. 20.4).

Контурное заземляющее устройство (рис. 20.5), заземлители которого располагаются по контуру (периметру) вокруг заземляемого оборудования на небольшом расстоянии друг от друга (несколько метров), обеспечивает лучшую степень защиты, чем предыдущее

Заземлители бывают одиночные и групповые, исскуственные и естественные.

Груповой заземлитель состоит из вертикальных стержней и соединяющей их горизонтальной полосы.

В качестве естественных заземлителей используют:

– проложенный в земле водопровод;

– обсадные трубы скважен (металлические);

– свинцовые оболочки кабелей, проложенных в земле;

– другие металлоконструкции, расположенные в грунте.

Общее сопротивление заземляющего устройства состоит из сопротивления естественных и искусственных заземлителей:

где – требуемое (допустимое) значение сопротивления заземляющего устройства.

Требования к сопротивлению защитного заземления регламентируются ПУЭ. В любое время года это сопротивление не должно превышать 4 Ом

Устройство контура заземления

Заземляющий контур — это защитное устройство, состоящее из нескольких металлических электродов, вертикально забитых в грунт на определенную глубину. Они соединены между собой горизонтальным заземлителем, который изготавливается из стальной полосы и с помощью сварки крепится к верхней части электродов. Собранный таким образом контур при помощи специального кабеля или стальной полосы соединяется с внутренней схемой заземления дома, которая выводится на наружную сторону стены здания.

Принцип действия защитной цепи

Правильно собранные в одну цепь заземляющие элементы защищают человека от внезапного удара током, а бытовые электроприборы — от поломки в случае пробоя напряжения на их корпус.

Это происходит таким образом. Во время короткого замыкания или утечки тока на обшивку прибора, с него снимается напряжение и через проводник отводится в грунт на заземляющее устройство. Поэтому, чтобы схема контура заземления работала четко, она выполняется строго по требованиям ГОСТа, где специально предусмотрены нормативы внешнего сопротивления всей цепи заземления с учетом таких факторов, как:

  1. Вид почвы и его влажность.
  2. Уровень подпочвенных вод.
  3. Количество электродов, их размер и расположение в контурном заземлении.
  4. Глубина погружения электродов.
  5. Материал электродов и линейных заземлителей, соединяющих их между собой, и внутренним заземлением здания.

Расчет профиля схемы

Для правильного функционирования системы защиты желательно произвести расчет ее сопротивления. Для этого нужно учитывать следующее:

  1. Количество и параметры заземляющих электродов: длину, контактную площадь соприкосновения с землей и расстояние между собой.
  2. Общую линейную длину горизонтальных заземлителей, соединяющих электроды и внутренний контур в доме.
  3. Удельное сопротивление грунта.
  4. Влажность грунта и его соленость.
  5. Время года (температуру почвы).

Но как показывает практический опыт, ни одна расчетная методика полностью не учитывает приведенные факторы, а просто используется типичный образец конструкции ранее спроектированного и уже смонтированного контура.

Типы и конструкции заземления

В частных домах требования ПУЭ допускают использование различных типов заземлений. В конструкцию обычного контура входят вертикальные электроды и одна горизонтальная перемычка. Все элементы должны быть одного размера и с круглым сечением в разрезе. Обычно они изготавливаются из толстой арматуры, труб или стальных прутьев.

Классической фигурой является контур заземления с конфигурацией треугольник, состоящий из арматурных прутьев в количестве 3 штук, размером 2 метра и более. Чем больше расстояние между прутками, тем эффективнее будет работать система. Минимальная дистанция составляет 1,5 м.

После того как электроды забиты в грунт, они соединяются между собой. На каждую сторону устанавливается отдельная полоса, закрепляемая на одной и той же высоте. Это и есть медные или стальные горизонтальные заземлители устанавливаемые на верхнюю часть штырей.

Место для установки контура в частном доме выбирается там, куда люди заходят очень редко. Предпочтение отдается северной стороне, которая плохо освещается и способствует сохранению в почве большого количества влаги. Расстояние от контура до стены дома должно быть не менее 1 метра.

В другом варианте заземление имеет конструкцию глубинного типа. В нем практически отсутствуют минусы, характерные для обычного способа, поскольку используется модульно-штыревая система. Весь комплект для сборки, сделанный на заводе, в техническом плане подтверждается сертификатом. Основным преимуществом данных систем является их соответствие нормативам, они отличаются повышенным сроком службы – от 30 лет и выше.

Электрический заряд стабильно растекается, независимо от погодных условий. Глубина залегания электродов достигает 30 метров, обеспечивая качество и надежность заземления, а вся собранная схема не требует постоянных проверок.

Требования к контуру заземления

Для эффективной работы заземления согласно ПУЭ он должен соответствовать правилам:

  1. Штыри заземления, сваренные в контур должны находиться не менее 1 метра и не более 10 метров от дома. Наиболее правильное расстояние от фундамента 2-4 метра.
  2. Стержни необходимо забивать на глубину 2-3 метра.
  3. Соединение электродов производится полосой из металла при помощи сварки. От щита до контура заземления применяется шина более 16 квадратных миллиметров. Для присоединения проводов к заземлению в щите может производиться с помощью болтов.
  4. Сопротивление заземления для напряжения в 380 вольт должно быть не выше 4 Ом, а для напряжения в 220 вольт — 8 Ом.

Внешняя часть системы заземления заглублена в землю, поэтому к ней предъявляются определённые требования. Она должна находиться ниже промерзания грунта, иначе электроды будут выталкиваться из-за вспучивания земли. Электроды должны быть такие, чтобы их можно было вбить в твёрдый грунт.

Рекомендуемые типы и параметры забиваемых электродов:

  • уголок толщина металла не менее 4 мм, любой размер;
  • труба диаметром удобным для забивания, с толщиной стенки не менее 3 мм;
  • стержень диаметром не менее 14 мм, более мелкий загибается при погружении в землю;
  • полоса для соединения электродов, толщиной не менее 3 мм, шириной более 10 мм.

Минимальная длина электродов выбирается 1,5 метра, штыри располагаются на расстоянии 1-2 длины электрода. Следует учитывать, что электроды (их длина) должны быть на 15-20 сантиметров ниже уровня промерзания почвы.

Контур заземления

Заземление означает намеренное соединение сетевой точки, электрического прибора, бытового оборудования с заземляющим контуром. В электротехнике так снижают вольтаж при прикосновении к деталям под напряжением до показателей, безопасных для человека. Выполняют с применением заземлителя, который непосредственно контактирует с грунтом, и проводящего провода.

Принцип действия заземляющих установок:

  • уменьшение потенциалов между токопроводящими деталями и другими проводниками с естественным заземлением;
  • отвод утекающего электричества при соприкосновении проводящего элемента и фазы, в правильно оформленных системах немедленно срабатывает УЗО;
  • инициация реагирования предохранителя при контакте фазы и заземлителя (в схемах с глухо заземленными нейтралями).

Типы контуров

Заземлители электрической сети имеют похожие строения независимо от количества фаз. Есть вариант использовать погруженные в грунт проводники из стальных уголков, прутков на глубину 2 – 3 м. Перемычки располагают на высоте не более чем полметра до уровня земли. К одной горизонтальной перемычке приваривают токоотводящий кабель, который выходит на поверхность.

Разновидности конструкции:

  • линейная, когда два или более вертикальных штырей последовательно соединены вдоль перемычками;
  • замкнутая, если вбиты 3 или 4 уголка, которые соединены по контуру связями в форме треугольника, квадрата.

Линейный тип проигрывает по результативности. При коррозии перемычки или вертикального элемента качество заземления снижается, а в замкнутом варианте все элементы дополняют друг друга, даже в условиях порчи одного штыря. Можно приобрести заводской комплект с опробованной и тщательно рассчитанной конструкцией.

Требования

Характеристики контура зависят от сопротивления току растекания, который показывает, как легко электроток преодолеет расстояние от коробки бытовой техники, и уйдет в землю при необходимости. Показатель зависит от вида металла, глубины погружения стержней, влажности и многого другого.

Нормативные требования к заземляющим контурам:

  • сооружение делают из отдельных стержней, проводящих ток;
  • используют только медь или сталь, но не алюминий и другие металлы;
  • минимальная толщина металла — 4 мм;
  • минимальный диаметр железных труб — 32 мм;
  • штыри соединяют сваркой в один контур непрерывной сетью;
  • если используют естественную систему, то подключение проводника выполняют, как минимум, в двух точках.

Заглянем в теорию

Рассмотрим пример – схема заземления с одиночным вертикальным заземлителем, забитым в землю. С ним соединён металлический корпус электроприбора, где произошло короткое замыкание – фаза соединилась с корпусом. При этом исходные условия: замыкание «металл – на металл», без учёта сторонних факторов, поэтому сопротивлением в точке контакта можно пренебречь. Сопротивление заземляющего проводника от прибора до земли тоже не учитываем, так как оно незначительное, когда используется достаточно большое сечение.

Далее при условии, что грунт вокруг заземлителя считаем однородным во всех направлениях, то и ток будет уходить в землю одинаково в этих же направлениях. При этом наибольшая плотность тока будет у самого заземлителя. Чем дальше от заземлителя, тем больше уменьшается его плотность. В итоге получается, что на пути тока сопротивление его движению с увеличением расстояния от заземлителя всё более уменьшается, потому что он проходит через постоянно увеличивающееся «сечение» проводника – земли. И напряжение, которое снижается на пути этого тока по закону Ома: самое большое на самом заземлителе, а при удалении плавно убывает. А на каком-то расстоянии от заземлителя напряжение станет пренебрежимо мало – приблизится к 0. Точка с таким напряжением – точка нулевого потенциала. По сути эта точка нулевого потенциала и есть та самая земля, с которой связан корпус электроприбора.

Сопротивление заземляющего устройства, это не электрическое сопротивление его металла – оно низкое, это не сопротивление между металлом штыря и землёй – при соблюдении определённых условий оно тоже небольшое. Это сопротивление земли между штырём и точкой нулевого потенциала.

Всё это отображается формулой Rз : Uф / Iкз. То есть – сопротивление заземляющего устройства будет равно фазовому напряжению, пришедшему на корпус, поделённому на ток короткого замыкания. На этой формуле всё и завязано.

Но параметров сопротивления одиночного заземлителя скорее всего будет недостаточно, чтоб организовать контур заземления, соответствующий требованиям ПУЭ. Как всё привести в соответствие? Площадь заземляющего электрода имеет решающее значение, поэтому самое очевидное решение – нужно забить рядом ещё один электрод. Но если забить их в непосредственной близости, то ток растекается, как и прежде, ничего не меняется. Для того чтоб поменять конфигурацию растекания нужно разнести заземляющие электроды подальше друг от друга. В этом случае получается разделение тока между ними – он стекает с каждого из них.

Однако существует зона, где они пересекаются. Получается, что это не простое параллельное соединение двух сопротивлений, за исключением примеров, когда заземлители очень далеко друг от друга. Но это очень непрактично, для реального устройства заземления потребуются огромные площади. Поэтому при расчётах удаления заземляющих электродов используют поправочные коэффициенты, которые учитывают их взаимное влияние – коэффициент экранирования.

Чтобы ещё уменьшить сопротивление контура заземления, нужно увеличить глубину погружения электрода, то есть увеличить его длину. Ведь чем длиннее заземлитель, тем больше площадь, способствующая растеканию тока. Этот эффект широко используется при изготовлении омеднённых штырей для комплектов заземления. Они забиваются в землю друг за другом соединяясь резьбовыми муфтами в единый электрод. При этом достигается нужная для параметров заземления глубина.

Соединяя электроды заземления горизонтальной связью, ещё снижается общее сопротивление заземляющего устройства

Влияние связи тоже учитывается, также принимаются во внимание, что её экранируют вертикальные электроды

Получается система из нескольких элементов, зависящих друг от друга:

Расстояние между вертикальными заземлителями.
Их количество.
Важно, на какую глубину они забиты.
Форма – прут, труба, уголок. Это разная площадь прилегания к земле.
Форма и длина горизонтальной связи.

То есть факторов достаточно много и по одной формуле всё рассчитывать некорректно

Остальные параметры для расчёта берутся из следующих понятий и величин

То есть факторов достаточно много и по одной формуле всё рассчитывать некорректно. Остальные параметры для расчёта берутся из следующих понятий и величин.

Устройство заземления своими руками: поэтапная инструкция

Если Вы задаетесь вопросом: «как сделать заземление на даче?», то для выполнения данного процесса потребуется следующий инструмент:

  • сварочный аппарат или инвертер для сварки металлопроката и вывода контура на фундамент здания;
  • угловая шлифмашинка (болгарка) для разрезания металла на заданные куски;
  • гаечные глючи для болтов с гайками М12 или М14;
  • штыковая и подборная лопаты для рытья и закапывания траншей;
  • кувалда для вбивания электродов в землю;
  • перфоратор для разбивания камней, которые могут встречаться при рытье траншей.

Чтоб правильно и согласно нормативным требованиям выполнить контур заземления в частном доме нам потребуются следующие материалы:

  1. Уголок 50х50х5 — 9 м (3 отрезка по 3 метра).
  2. Сталь полосовая 40х4 (толщина металла 4 мм и ширина изделия 40 мм) — 12 м в случае вывода одной точки заземлителя на фундамент здания. Если же Вы хотите выполнить контур заземления по всему фундаменту к указанному количеству добавьте общий периметр здания и еще возьмите запас для подрезки.
  3. Болт М12 (М14) с 2 шайбами и 2-я гайками.
  4. Медный заземлитель. Может быть использована заземляющая жила 3-х жильного кабеля либо провод ПВ-3 с сечением 6–10 мм².

После того как все необходимые материалы и инструменты есть в наличии можно переходить непосредственно к монтажным работам, которые детально расписаны в следующих главах.

Выбор места для монтажа контура заземления

В большинстве случаев рекомендуется монтировать контур заземления на расстоянии в 1 м от фундамента здания в месте где оно будет скрыто от человеческого глаза и к которому будет сложно добраться как людям, так и животным.

Такие меры необходимы для того, что при повреждении изоляции в электропроводке потенциал будет идти на контур заземления и может возникнуть шаговое напряжение, которое может привести к электротравме.

Выполнение земляных работ

После того как было выбрано место, выполнена разметка (под треугольник со сторонами 3 м), определено место вывода полосы с болтами на фундамент здания можно приступать к земляным работам.

Для этого необходимо с помощью штыковой лопаты по периметру размеченного треугольника со сторонами по 3 м снять слой земли в 30–50 см. Это необходимо для того, чтоб в дальнейшем без особых трудностей к заземлителям приварить полосовой металл.

Также стоит дополнительно прокопать траншею такой же глубины для подвода полосы к зданию и выводу ее на фасад.

Забивание заземлителей

После подготовки траншеи можно приступать к монтажу электродов контура заземления. Для этого предварительно с помощью болгарки необходимо заточить края уголка 50х50х5 или круглой стали диаметром 16 (18) мм².

Далее выставить их в вершины полученного треугольника и с помощью кувалды забить в землю на глубину 3 м

Также важно чтоб верхние части заземлителей (электродов) находились на уровне выкопанной траншеи чтоб к ним можно было приварить полосу

Сварные работы

После того как электроды будут забиты на необходимую глубину с помощью стальной полосы 40х4 мм необходимо сварить между собой заземлители и вывести данную полосу на фундамент здания где будет подключен заземляющий проводник дома, дачи или коттеджа.

Там, где полоса будет выходить на фундамент на высоте 0.3–1 мот земли, необходимо приварить болт М12 (М14) к которому в дальнейшем будет подключено заземления дома.

Обратная засыпка

После выполнения всех сварных работ полученную траншею можно засыпать. Однако перед этим рекомендуется залить траншею соляным раствором в пропорции 2–3 пачки соли на ведро воды.

После полученную почву необходимо хорошо утрамбовать.

Проверка контура заземления

После выполнения всех монтажных работ возникает вопрос «как проверить заземление в частном доме?». Для этих целей конечно обычный мультиметр не подойдет, поскольку у него очень большая погрешность.

Для выполнения данного мероприятия подойдут приборы Ф4103-М1, Клещи Fluke 1630, 1620 ER и так далее.

Однако эти приборы очень дорогие, и если Вы выполняете заземление на даче своими руками, то для проверки контура Вам будет достаточно обычной лампочки на 150–200 Вт. Для данной проверки Вам необходимо один вывод патрона с лампочкой подключить к фазному проводу (обычно коричневого цвета) а второй — к контуру заземления.

Если лампочка будет ярко светить — все отлично и контур заземления полноценно функционирует, если же лампочка будет тускло светить или вообще не испускать световой поток — значит контур смонтирован неверно и нужно либо проверять сварные стыки или монтировать дополнительные электроды (что бывает при низкой электропроводимости почвы).