Варианты расчета осадки фундаментов методом послойного суммирования

Содержание

Расчет осадки свай

В СП предусматривается несколько расчетных схем, учитывающих размещение свай относительно друг друга. При этом все они основываются на линейно-деформируемой модели грунта, но при надлежащем обосновании могут применяться и другие варианты. Основным условием расчета на осадки любого типа свайных фундаментов является определение значения его возможных деформаций, не превышающих предельных показателей.

где S– общая осадка;

Su – предельная деформация.

По СНиП висячие сваи рассчитываются на осадки как условный фундамент, границы которого на уровне пяты выходят за пределы общей площади реально расположенных лент или кустов свай. В актуализированной версии СП предусмотрен несколько иной алгоритм расчета.

Одиночные сваи

Существует ряд формул, определяющих осадку:

висячие сваи, не имеющие уширения в зоне пяты

где N – принимаемая сваей вертикально направленная нагрузка, МН;

l – линейный размер сваи, а именно – ее длина, м;

здесь, d – наружный диаметр сваи, м.

Если поперечное сечение является не круглым, а квадратным, прямоугольным, тавровым или двутавровым, то для определения условного диаметра применяется формула:

здесь А – соответствует табличному значению площади поперечного сечения.

υ – коэффициент Пуассона;

параметр, учитывающий увеличение расчетной осадки, возникающее по причине сжатия ствола –

стоячие сваи и висячие с уширением в зоне пяты

Значения модуля сдвига и коэффициента Пуассона зависят от характеристик грунтовых пластов. Они принимаются путем послойного суммирования и осреднения в результате деления полученной цифры на количество присутствующих слоев в пределах глубины погружения сваи.

Свайный куст

Расчет свайной группы на осадки основывается на взаимодействии подземных опор между собой. В этом случае определяется дополнительная деформация сваи, расположенной на определенном расстоянии (ɑ) от нагружаемой сваи.

Если распределение нагрузок между сваями в одном кусте известно, то при вычислении осадки каждой из них используется формула:

где s(N) – определяемая по вышеприведенной формуле осадка (для одиночно расположенной сваи);

Свайное поле

Расчет, в данном случае, рекомендуется выполнять иначе, нежели в двух предыдущих вариантах. Для этого существует формула:

На размещенном ниже рисунке показано, что такое границы условного фундамента относительно крайних рядов свай:

а) вертикально расположенных;

б) наклонно расположенных.

Осадка свайного поля вычисляется методом послойного суммирования. В этом случае в зоне условного фундамента масса грунта в учет не принимается, а в качестве нагрузки учитывается лишь прямое воздействие расчетных усилий на свайный фундамент.

При расчетах методом послойного суммирования для свайного поля, берут во внимание то, что общая величина осадки находится в зависимости от шага свайных опор в пределах площади поля. Но здесь возникает определенная сложность, так как шаг может иметь переменную величину

В этом случае вариант послойного суммирования усложняют методом ячейки, используя при расчетах другие схемы и формулы, детально указанные в СП.

Принцип метода послойного суммирования

Его суть описана в СП 22.13330.2011, являющихся актуализированной редакцией СНиП 2.02.01-83*. Она состоит в следующем. Вертикальные усилия на фундамент расчленяют на несколько участков, соответствующих толщине грунтовых слоев, которые характеризуются однородным составом и свойствами. На расчетной схеме криволинейная эпюра изменяется на ступенчатую. В каждом слое определяют работу на сжатие без бокового расширения. При этом общую осадку вычисляют методом послойного суммирования.

В процессе расчета строят схему распределения напряжений, а при расчетах пользуются специальными формулами, указанными в СП, и размещенными там же таблицами. Пример схемы показан на рисунке ниже.

Комбинированный фундамент

Свайно-плитная конструкция подземной части дома применяется в целях снижения осадок и более равномерного распределения нагрузок. Такой фундамент эффективно работает в сложных грунтовых условиях, сочетая сопротивление нагрузкам как свай, так и плиты. Расчет осадки, в данном случае, включает в себя определение:

  • усилий в сваях и плите;
  • деформаций и перемещений комбинированного фундамента в целом, а также его отдельных составляющих;
  • нагрузок в процентном отношении на каждую из свай и определенные участки плиты.

Правильные вычисления и выбор конструктивных элементов комбинированного фундамента обеспечит отсутствие существенных осадок, перекосов и кренов строения в период его эксплуатации. Дополнительные условия расчета приведены в СП 24.13330.2011.

Определение среднего вертикального давления р под подошвой условного фундамента и проверка выполнения условия р

Для вычисления р необходимо определить площадь подошвы условного ленточного фундамента Аусл и нагрузки, передающиеся на эту площадь от собственного веса всех элементов, входящих в объем условного фундамента, а также и от сооружения.

а) Площадь условного ленточного фундамента:

 – среднее значение угла внутреннего трения грунтов, залегающих в пределах рабочей длины сваи .

 = 1,01

б) Объемы условного фундамента, всех входящих в него конструктивных элементов и грунта:

условного фундамента:

ростверка:

части стены подвала, расположенной ниже верха условного фундамента (ниже отметки пола подвала):

части пола подвала (справа и слева от стены подвала):

грунта:

Объем свай не вычитается из объема . При подсчете веса грунта в условном фундаменте . не учитывается увеличение его удельного веса за счет уплотнения при забивке свай.

Принимается, чт

в) Нагрузки от собственного веса всех составных частей условного фундамента и от сооружения:

ростверка и всей надростверковой конструкции, то есть всей стены подвала, включая ее часть, расположенную выше отметки DL:

Q = QP + Qнк = 45,6 кН;

части пола подвала ;

свай (1,03 сваи с рабочей длиной lсв = 3,9 м, из которых 0,1 м – в водонасыщенном грунте):

грунта в объеме условного фундамента:

Среднее давление р под подошвой условного фундамента:

Вычисление расчетного сопротивления R по формуле (7) СНиП для песка мелкой крупности, (IV слой), залегающего под подошвой условного фундамента.

где

 = 1,0 ;=1

 , , ;

=1

;

м3,

Условие р ≤ R выполняется: 315,74 < 967,66. Расчет осадки методами, основанными на теории линейного деформирования грунта, правомерен, поэтому далее производится расчет осадки методом послойного суммирования.

Влияние грунтов на состояние опор для дома

В земле под подошвой развиваются осадки выпирания, которые чаще образуются под краями. Давления перераспределяются по низу фундамента и возникают пластические искажения. Дальнейший рост давления ведет к расширению области деформации и появляется опасность вспучивания почвы из-под подошвы.

Расструктурирование грунта также ведет к созданию опасных зон. Риск возникает при рытье котлована, траншей. При этом обнажается внутренняя структура земли, и на нее влияют негативные факторы, которые ранее сдерживались.

Осадка грунта зависит от следующих условий:

  • метод земляных работ;
  • продолжительность возведения нулевого цикла;
  • устройство водоотведения;
  • мероприятия по сохранности естественной структуры.

Строение грунта нарушается из-за погодных влияний на открытые срезы, динамического напряжения от работы механизмов, подземных газов и влаги. Промерзание увеличивает объем увлажненных слоев и развивает силы пучения, которые иногда превышают осадку ленточного фундамента от внешних влияний. Выпячивание земли негативно влияет при строительстве и при эксплуатации постройки.

Учет состояния грунта

Несущая способность грунта считается важнейшей характеристикой, определяющей тип и размеры фундамента. Она, прежде всего, зависит от его плотности и структуры. Оценить ее можно по сопротивлению нагрузкам – Rо, указывающей какая нагрузка на единицу площади допустима без его проседания (на поверхностном уровне). Выражается Rо в кг/см² и считается табличной, т.е. справочной, величиной.

Величина сопротивления зависит от пористости (плотности) почвы и ее увлажненности. В таблице ниже приведены значения этого показателя для наиболее типичных почв.

Значения сопротивления нагрузке для некоторых типов грунта:

Характер грунта Коэффициент пористости Ro , кг/см²
Сухие Влажные
Супеси 0,5 0,7 3,1 2,6 3,1 2,0
Суглинки 0,5 0,7 1,0 3,0 2,6 2,0 2,4 1,8 1,1
Глины 0,5 0,6 0,8 1,0 6,0 5,0 3,1 2,6 4,2 3,0 2,0 1,2

Достаточно высоким сопротивлением обладают гравийные и щебневые грунты – 4-5 и 4,4-6 кг/см², соответственно, в зависимости от глинистого или песчаного наполнения. Крупнозернистый песчаник имеет Rо 3,6-4,4 кг/см², песчаник средней зернистости – 2,6-3,4 кг/см², мелкозернистый песчаник – 2-3 кг/см² в зависимости от увлажненности.

С увеличением глубины залегания пласта меняется плотность грунта, а значит, и сопротивление нагрузкам. Его значение на разных глубинах (h) можно определить по формуле R=0,005R0(100+h/3).

При определении заглубления фундамента важную роль играют такие параметры состояния грунта:

  1. Уровень расположения грунтовых вод. Фундамент не должен доходить до водного пласта. Этот параметр часто становится определяющим для выбора типа основания. В частности, при высоком расположении вод приходится возводить плитный фундамент.
  2. Глубина зимнего промерзания грунта. Подошва фундамента должна располагаться на 30-50 см ниже уровня промерзания. Дело в том, что при замерзании грунт сильно вспучивается, что создает выталкивающую нагрузку на основание.
  3. Уровень залегания высокопучинистых пластов. Фундаментную подошву нельзя упирать в такой грунт, а значит, его следует пройти насквозь.

Рекомендуем: Монолитная плита фундамента своими руками. Как правильно залить плитный фундамент под частный дом? Заглубление фундамента частного дома обычно не рассчитывается, т.к. требует использования сложной методики. Его выбор осуществляется, исходя из указанных практических рекомендаций.

Особенности для свайно-винтового основания

Расчет свайно-винтового фундамента проводят по методике, описанной ранее. Отличительной особенностью является то, что на этапе геодезических исследований измеряют коррозионную агрессивность почвы и на основе полученных данных подбирают сваи с определенной толщиной стенки трубы и лопастей (в соответствии с ГОСТ 27751-2014).

Таблица расчета нагрузки на винтовые сваи:

Конструктивный элемент Коэффициент надежности Формула расчета
Внешние стены 1,1 Lстен х hстен х Mстен х 1,1
Внутренние стены 1,1 Nэтажей х hэтажа х Lстен х Mстен х 1,1
перегородки 1,2 hэтажа х Lперег. х Mперег. х 1,2
Перекрытия 1,1 Nперекр. х Sперекр. х 1,1
Кровля 1,2 (Sкровли х М кровли х 1,2)/ косинус угла наклона кровли
Фундамент 1,05 Nсвай х Mсвай х 1,1
Полезная нагрузка 1,2 Nэтаж. х Sэтаж. х 150 х 1,1
Снеговая нагрузка 1,4 Mсн. х Sкр. х 1,4

Пример

Исходные условия:

  1. Одноэтажный каркасный дом площадью 6 на 6 м на винтовых сваях.

  2. Металлическая вальмовая кровля.
  3. Толщина внутренних перегородок – 800 мм.
  4. Толщина внешних стен с утеплителем – 1000 мм.
  5. Высота этажа – 3 м.
  6. Общая длина перегородок – 25 м.
  7. На участке глинистый тип грунтов.
  8. Глубина промерзания – 3 м.
  9. Нормативная снеговая нагрузка – 180 кг/м².

Выбираем винтовые сваи диаметром 108 м и высотой 4 м (с учетом глубины промерзания грунта, высота цоколя и запаса). Количество свай принимаем равным 9: по углам конструкции и между угловыми силовыми элементами (шаг 1,5 м).

Рассчитываем суммарные нагрузки с учетом запаса надежности:

  • нагрузка внешних стен – 6600 кг;
  • внутренних стен – 1980 кг;
  • перегородок – 2204 кг;
  • перекрытий – 11880 кг;
  • кровли – 3700 кг.

Находим предварительный вес фундамента для 9 свай весом 40 кг с запасом прочности (5%): 9 х 40 х 1,05 = 378 кг.

Рассчитываем полезную нагрузку, исходя из установленного значения 150 кг/м² и коэффициента надежности 1,2: 6 х 6 х 150 х1,2 = 6480 кг.

Снеговая нагрузка (запас прочности 40%): 6 х 6 х 180 х 1,4 = 9072 кг.

Суммарная нагрузка на грунт будет равна 42294 кг

Принимая во внимание несущую способность одной опоры (5 тонн), проверяет количество необходимых силовых элементов: 42 т / 5 т = 8,4 шт

Окончательно принимаем 9 свай для фундамента. Расставляем силовые элемента согласно ранее выбранной схемы.

Причины появления осадки основания дома

Важным фактором, от которого напрямую зависит степень осадки фундамента, следует считать состав грунта. Все почвы делятся на типы, каждый из которых отличается большой или маленькой прочностью. Самыми прочными являются скальные грунты, в основном состоящие из монолитов. Второе место занимают дисперсные почвы, основой которых являются минеральные зерна различного диаметра. Эти почвы также имеют название несвязных, потому что не способны удерживать влагу.

Связными специалисты называют грунты, обладающие способностью к поглощению и удержанию жидкости. Важным компонентом в таких грунтах служит глина, которая делает их пластичными и подвижными. Грунты данного вида имеют высокий показатель вспучивания, что объясняется замерзанием жидкости между их частицами в холодное время года.

Схема разрушения дома.

Первая причина появления осадки фундамента – тип почвы. Дома, построенные на связных грунтах, могут подвергаться повышенной и неравномерной осадке. Вторым фактором, оказывающим большое влияние на появление трещин и перекосов, следует считать конструктивные особенности строения. Дополнительная осадка может возникнуть в случае, когда отмечается неравномерная нагрузка стен здания на основание, обусловленная их различным весом: например, в одной половине дома много арочных проемов, в другой же выстроены только глухие стены.

Может влиять на степень осадки и непосредственно процесс возведения дома. Так, часть здания, выстроенная летом, даст осадку, отличную от той, которая будет наблюдаться при зимнем строительстве. Если по каким-либо причинам нет возможности полностью отстроить здание летом, и вы планируете продолжить работы в другое время года, специалисты рекомендуют использовать для более позднего строительства облегченные виды материалов.

Характеристика грунта

Есть два вида грунта:

  1. Естественный — залегает под фундаментом и обеспечивает устойчивость основания равномерно.
  2. Искусственный — упрочняют специально: трамбуют, высушивают и тому подобное.

Две группы грунтов:

  • Пучинистые — глинистый, песочный, мелкий.
  • Непучинистые — гравий, крупный и средний, не содержат глину.

Бывают виды:

  1. Скальный — сплошной, прочный, водоустойчивый, многолетний.
  2. Крупнообломочный — гравий, галька, валуны.
  3. Песчаный — сыпучие и сухие породы.
  4. Глинистые — очень пластичный и создает гладкую поверхность.
  5. Суглинок — глинистый, но хрупкий материал.
  6. Супесь — хрупкий и не эластичный, но содержит небольшое количество глины.

Расчёт осадки ленточного фундамента

Кроме метода послойного суммирования существуют различные методики определения величины проседания здания. При условиях отдельно стоящего строения с учётом сопротивления грунтового основания и других сил, только использование метода послойного суммирования будет наиболее верным расчётом.

Способ основан на создании эпюр напряжений в многослойной почве по каждой вертикальной оси.

Схемы расчётов по методу сложения усадки слоёв почвы

Определение осадки ленточного фундамента производится с целью, чтобы:

  • определить величину просадку монолитной ленты с присоединёнными другими основаниями,
  • выполнить точный расчёт осадки основания здания, возведённого из разных материалов,
  • определить осадочный характер и физические свойства основания здания, которые связаны с изменением показателя деформации по мере увеличения глубины заложения фундамента.

Данная методика расчета определяет показатели основания по каждому сочетанию вертикальных осей, без учёта угловых переменных, используя периферийные значения и центральный показатель. Сделать это возможно при залегании по периметру основания строения равномерных структурных слоёв почвы.

Схема построения графика напряжений по группам вертикальных осей

Обозначения по СНиП 2.02.01-83:

  • S — показатель осадки,
  • zn – средняя величина напряжения вдоль вертикальной оси в слое «n»,
  • hn, En – толщина сжатия и индекс деформации слоя «n»,
  • n – удельная масса почвы в «n»,
  • hn — высота слоя «n»,
  • b = 0,8 – постоянный коэффициент.

Ширина ленточного монолитного фундамента – 1200 мм (b), глубина заложения составит 1800 мм (d).

Пример определения величины осадки ленточного фундамента

Общая нагрузка от веса здания на почву составит 285000 кг•м −1 •с −2 . По каждому слою отмечают такие значения:

  1. Верхний слой — сухая почва (песок мелкой фракции, с показателями пористости e 1 = 0,65, плотностью y 1 = 18,70 кН/м³, индексом сжатия Е 1 = 14400000 кг•м −1 с −2) .
  2. Средний слой – мокрый крупный песок с соответствующими показателями: e2= 0,60, γ2 = 19,20 кН/м³, Е2 = 18600000 кг•м −1 с −2 .
  3. Нижний слой грунта – суглинок с соответствующими значениями: e3 = 0,180, y3 = 18,50 кН/м³, Е 3 = 15300000 кг•м −1 с −2 .

Слои залегания грунта с различными показателями усадки

Результаты исследований грунта взяты в местном геолого-геодезическом управлении. Грунтовые воды на территории застройки находятся на расстоянии от поверхности земли 3800 мм. глубина залегания грунтовых вод такой величины не имеет значения даже для заглубленного фундамента здания. В этом случае воздействие грунтовых вод на осадку здания считают мизерным, то есть практически никаким.

Метод послойного суммирования базируется на исследовании всех эпюр напряжений в грунтовом массиве вдоль вертикальных осей.

Для нанесения графика эпюр и расчета критических нагрузок на грунт производят действия согласно СНиП 2.02.01-83.

В результате получают следующие показатели по каждому слою почвы: S1 = 11,5 мм, S2 = 13,7мм, S3 = 1,6 мм.

Суммарное проседание основания здания составит:

Сравнивая полученные результаты с определёнными нормативами СНиП, делают вывод, что величина осадки не превышает предельных норм.

Расчёт осадки свайного основания

Определяют осадки свайного фундамента методом послойного суммирования.

Вид свайного основания здания

Полный расчёт осадки свайного основания выполняется проектной организацией на протяжении от нескольких дней до 2-х недель. Проектировщики пользуются специальными компьютерными программами. Человеку, не имеющему специального образования, сделать это самостоятельно практически невозможно.

Произвести расчёт осадки свайного основания небольшого частного дома можно упрощённым способом, что под силу каждому застройщику.

Используя схемы расположения различных видов свай и расчётных формул, указанных в СП 24.13330.2011, можно определить как величину осадки одиночной сваи, так и степень проседания всего свайного поля.

Применяют различные методики определения величин осадки разных типов фундаментов, в основном, для крупных объектов промышленного и гражданского назначения.

Порядок расчета осадки фундаментов Любое строение со временем подвержено проседанию. Если основание опустилось по всей площади опирания, то расчёт осадки фундамента произведён правильно.

Описание

Осадка фундамента — это очень важная характеристика, она меняется с течением времени и в зависимости от грунта. Есть причины, по которым обычно случается неравномерное проседание:

  • Экономия на материалах для фундамента и покупка дешевых и некачественных материалов.
  • Дешевая и неквалифицированная рабочая сила.
  • Неверно произведены расчеты глубины фундамента, уровня близости грунтовых вод.
  • Нет дренажной системы.

Цели определения осадки:

  • определить величину просадки;
  • выполнить точный расчет осадки для фундамента из разных материалов;
  • рассчитать возможные деформации и физические изменения.

Несколько советов по заложению фундамента

Многие, особенно начинающие строители, стремясь повысить качество и надёжность основания, допускают некоторые ошибки. Попробуем указать на основные нюансы:

Увеличивая высоту ленты основания можно добиться высокой степени жёсткости. Но данный показатель не всегда приводит к положительным результатам и уменьшает влияния на него нагрузок. Приходиться выполнять армирование фундаментов, которое повышает степень напряжения. Основанию необходимо придать гибкость, тем самым снизить коэффициент жёсткости. Сложно выполнить расчёты деформаций от нагрузки, которые оказывают такие факторы, как морозное пучение или влияния грунтовых вод. Они могут со временем меняться. Поэтому лучше всего обращаться к специалистам для определения типа грунта и влияния климатических условий

Для предотвращения возникновения деформаций основания, следует обратить внимание на мероприятия по усилению, как самого фундамента, так и цоколя со стенами. Для снижения воздействия на основание морозов в зимнее время и демисезонной влаги рекомендуется провести ряд мероприятий по утеплению и гидроизоляции

В том случае, когда они запланированы, то данный фактор надо учесть при расчёте нагрузки.

Если же к этой ответственной задаче приступили самостоятельно, то можно использовать специальные программы например Лира. Это компьютерная программа, которая позволяет выполнять строительные расчёты. Необходимо только правильно ввести все параметры, а техника посчитает и выдаст результат: расчёт фундамента при горизонтальной нагрузке, площадь подошвы и толщину подушки. К тому же, это отличная проверка самостоятельных расчётов. Не стоит забывать и об онлайн калькуляторах.

Подробнее о способе вычисления

Расчёт дома и его особенностей

Вычисление путем послойного суммирования дает возможность определить осадку не только возводимого, а также рядом стоящих оснований, учесть разнородность, которая выражается в изменениях конструкции по глубине. Данным способом можно рассчитать осадку сразу нескольких вертикалей. Сложность послойного суммирования в том, что здесь нужно найти дополнительные нагрузки, извне, дающие напор на фундамент возводимого сооружения. Напряжения находятся методом угловой точки, когда рабочая ось принимается за угловую.

Особенно удобен метод послойного суммирования при большой подошве результат всегда эффективный. Особенно когда структура основания слоистая и резко меняется, когда сжимаются отдельные слои.

Во время определения осадки обязательно учитывается воздействие глубины заложения фундамента и по ней устанавливаются суммированные пределы. До возведения основания грунт, находящийся на уровне подошвы, был обжат двоением вышележащей почвы, поэтому чтобы определить величину осадки, за начальную точку давления принимается влияние веса на основании от дома.

Осадка оснований

§ 21. Виды деформаций оснований

Под воздействием нагрузки от сооружения его основание деформируется и дает осадку, а в некоторых случаях — просадку.

Осадкой основания (или осадкой фундамента) называют вертикальное перемещение поверхности грунта под подошвой фундамента, связанное с передачей на основание нагрузки от сооружения.

Различают осадку основания равномерную и неравномерную. При равномерной осадке перемещения точек поверхности грунта под всей площадью фундамента одинаковы, а при неравномерной — неодинаковы. Равномерная осадка основания, как правило, не является опасной; неравномерная же осадка часто становится причиной нарушения условий нормальной эксплуатации сооружений, а иногда и их аварий.

Для уплотнения грунта под нагрузкой требуется определенное время, в течение которого наблюдается рост осадки основания. Осадку, соответствующую окончательному уплотнению грунта, называют полной, конечной или стабилизированной.

Большую быстро протекающую осадку, сопровождающуюся коренным изменением сложения грунта, называют просадкой. Просадка наблюдается, например, при выпирании грунта из-под подошвы фундамента и при замачивании макропористых грунтов под нагрузкой.

§ 22. Методы расчета осадки

Расчет осадки уплотнения ведется в предположении, что грунт подчиняется законам линейно деформируемой среды, когда деформации линейно зависят от давлений. Теоретически максимальное давление на грунт, при котором существует линейная зависимость, определяется отсутствием под подошвой фундамента пластических зон. Однако наблюдения за сооружениями показывают, что небольшое развитие зон пластических деформаций под гранями фундамента может быть допущено.

Для определения конечной осадки основания широко применяют метод послойного суммирования. При этом считают, что осадка основания происходит в результате уплотнения некоторой толщи грунта ограниченной толщины, называемой активной зоной. Нижнюю границу активной зоны принимают на той глубине da от подошвы фундамента, на которой дополнительное давление (под центром тяжести подошвы) от передаваемой фундаментом нагрузки составляет 20% бытового (природного) давления.

При фундаменте, расположенном на поверхности грунта, дополнительные давления рz, кПа, определяют по формуле (2.7), а при заглубленном в грунт фундаменте — по формуле Рz=а(р0-рg), (4.1) где а — коэффициент, принимаемый по табл. 2.1; р0 — нормальные напряжения по подошве фундамента, кПа; pg — бытовое давление на глубине заложения подошвы фундамента, кПа.

Устройство опор в русле реки вызывает стеснение русла и может приводить к интенсивному размыву грунта, в особенности у опор. В результате этого бытовое давление в грунте уменьшается. В формулу (4.1) подставляют бытовое давление, подсчитанное без учета размыва грунта, т. е. давление, которым грунт был обжат до возведения сооружения. Это связано с тем, что после разгрузки грунта деформации его при повторном нагружении сначала весьма малы; они начинают заметно возрастать, лишь когда напряжения в грунте достигнут величин, имевшихся до разгрузки.

Активную зону грунта разбивают на горизонтальные слои толщиной не более 0,4b, где b — наименьший размер фундамента в плане, м. Если в пределах активной зоны имеется напластование разных грунтов, то их границы принимают за границы выделенных слоев. Осадку s основания определяют суммированием деформаций отдельных слоев. Деформацию si м, каждого i-го слоя подсчитывают в предположении, что уплотнение грунта происходит в условиях отсутствия бокового расширения (в условиях компрессионного сжатия) при постоянном давлении рz кПа; последнее принимают равным среднему дополнительному давлению рг, кПа, из давлений, возникающих в точках под центром тяжести подошвы фундамента в пределах рассматриваемого слоя.

Используя формулу (1.29) для определения деформации грунта при компрессионном сжатии, можем написать: si=eiti=(piβi/Ei)li (4.2) где ei — относительная деформация грунта i- го слоя; ti — толщина i-го слоя грунта, м; βi — коэффициент, принимаемый по табл. 1.3 в зависимости от вида грунта i-го слоя; Ei — модуль деформации грунта i-го слоя, кПа, определяемый по формуле (1.28) на основе результатов испытаний образцов грунта на компрессионное сжатие.

голоса

Рейтинг статьи

Нормативные документы

В настоящее время более поздней, актуализированной версией СНиП 2.02.03-85, распространяющейся на сферу проектирования свайных фундаментов, являются СП 24.13330.2011. В строительные правила внесены определенные замены и поправки, но в целом нормы СНиП особых усовершенствований не претерпели. Тем не менее, при существенных разногласиях, предпочтение следует отдавать СП, а не полагаться на СНиП.

Рассматриваемый свод правил озвучивает требования к проектированию определенного вида фундамента – свайного

В них указываются разные типы свай, геологические и инженерные условия, принимаются во внимание вновь строящиеся и находящиеся в стадии реконструкции сооружения. Но данные СП, как, впрочем, и СНиП, не имеют отношения к свайным опорам, возводимым:

  • под объектами с динамическими нагрузками;
  • в условиях вечной мерзлоты;
  • для нефтепромысловых сооружений;
  • на глубину более 35 метров.

ФУНДАМЕНТ ЗАГОРОДНОГО ДОМА

Е ще в первом российском строительном нормативном документе, а именно в Урочном Положении, было записано, что «на устройство поддела (фундамента) ни средств, ни иждивения жалеть не должно». Ошибки, возникающие вследствие неграмотно принятых решений при устройстве фундаментов, могут обернуться значительными расходами.

Фундаменты предназначены для восприятия нагрузок от стен, вышележащих конструкций и бокового давления грунта, кроме того, они защищают подвалы и цокольные этажи от грунтовых вод и сырости. С целью отвода поверхностных вод необходимо организовать соответствующий уклон грунта. Для этого выполняется вертикальная планировка, а вокруг дома устраивается отмостка. Стоимость фундаментов для каменных одноэтажных домов достигает 15–20% полной стоимости дома. Для деревянного дома средних размеров стоимость фундаментов может составить $4,5–5 тыс. Поэтому вопрос выбора надежного и недорогого фундамента важен для каждого застройщика.

Наилучшим вариантом решения этой проблемы является обращение за помощью к специалистам, имеющим опыт проектирования и строительства в данном регионе. К сожалению, не всегда у застройщика имеется возможность поступить таким образом. В данной публикации сделана попытка помочь правильно сориентироваться в этом непростом деле.

Для выбора правильного решения необходимо иметь представление о напластованиях грунтов в основании. Грунты должны быть оценены по прочности; устойчивости на сдвиг; опасности оползания, просадки и пучения при промерзании. Оценка грунтов может быть выполнена на основе имеющихся в изыскательских организациях результатов геологических исследований. При отсутствии таких данных и при необходимости самостоятельного исследования грунта на участке застройки следует вырыть шурф или пробурить скважину

Во время обследования выработки (шурфа или скважины) особое внимание необходимо обратить на почвенный или насыпной слои, т. к

их, как правило, не используют в качестве основания

Кроме того, крайне важно установить уровень грунтовых вод

Характеристики грунтов

Коротко грунты можно охарактеризовать следующим образом:

– скальные и обломочные грунты – прочные, не размываются и не вспучиваются при промерзании, если не содержат в своем составе глинистых и пылеватых частиц; – песчаные грунты (кроме мелкозернистых и пылеватых) – относятся к непучинистым, могут служить хорошим основанием; – мелкозернистые и пылеватые пески – можно использовать в качестве основания, однако они часто обладают свойствами плывунов; относятся к пучинистым грунтам; – глинистые грунты (глины, суглинки, супеси) – в сухом состоянии служат хорошим основанием и относятся к условно непучинистым; в водонасыщенном состоянии и при малой плотности находятся в текучем состоянии и сильно вспучиваются при промерзании.

Основание

Лучшим основанием для фундаментов считается однородный минеральный грунт без включений линз торфа или валунов крупных размеров и с глубоко расположенными грунтовыми водами. На таких грунтах при правильно распределенной нагрузке фундаменты получают равномерную осадку. Из оснований следует удалять различные неоднородные включения (остатки пней, органические материалы, валуны или другие разнородные образования).

Виды фундаментов

Вид фундаментов выбирают, исходя из величины нагрузок, чувствительности конструкций дома к неравномерным перемещениям основания, качества грунтов в основании, опасности воздействия морозного пучения, применяемых конструкций и материалов.

Важное значение имеет предполагаемое время, на которое возводится строение. Например, срок службы различных фундаментов составляет:. – ленточных бетонных и бутовых на цементном растворе – 150 лет; – бутовых или бетонных столбов – 30–50 лет; – деревянных стульев – 10 лет

– ленточных бетонных и бутовых на цементном растворе – 150 лет; – бутовых или бетонных столбов – 30–50 лет; – деревянных стульев – 10 лет.

Ленточные фундаменты

Ленточные фундаменты подводят под дома с тяжелыми стенами (бетонными, каменными, кирпичными и т. п.) или с тяжелыми перекрытиями. Их закладывают под все наружные и внутренние капитальные стены. Наличие под домом подвалов, теплых подполий, гаража или цокольного этажа делают просто необходимым выбор именно этого типа фундамента.

Расчет арматуры для фундамента

Арматура — скелет фундамента. Основание армируется для компенсации влияния нагрузки от строения на изгиб и растяжение. Такой армпояс для дома обеспечит прочность фундамента и сохранность постройки надолго.

Каркас формируется с использованием стержней, направленных в трех плоскостях, образуя сетку. Для укладки основания под частные дома используются стержни диаметров 10, 12, 14, 16 мм. Критерии при выборе: тип грунта, климатические особенности местности, материалы для стен и предполагаемые размеры возводимой конструкции. Чем легче постройка – тем меньше диаметр.

Стержни при формировании сетки стыкуются внахлест или прямым наложением, скрепляются между собой варкой или при помощи проволоки (механический способ).

Соединение внахлест вязанием удешевляет работы и является вполне приемлемым.

Расчет крена фундамента


Наклон опоры вызывается внецентренным действием внешних факторов (изгибающий момент) или влиянием рядом стоящих фундаментов. Крен может возникнуть от неоднородности почвы под подошвой. Формулы для расчета наклона основы строения регламентируются в СНиП 2.02.01 – 1983.

В расчет принимается деформационный модуль и коэффициент Пуассона:

  • супеси и пески — 0,3;
  • глины — 0,42;
  • суглинки — 0,35.

Модуль искажения принимается по специальным таблицам для определенного вида грунта. Учитывается ширина и площадь подошвы фундамента, высчитывается абсолютное и добавочное давление на основание. Расчет ведется для стороны прямоугольной конструкции, в отношении которой работает изгибающий момент. Если в надземной части не предполагается деформационного поворота, расчет крена не делается.