Какой знак выключателя палка или кружок

Введение

Но начнем немного издалека…
Каждый молодой специалист, который приходит в проектирование, начинает либо со складывания чертежей, либо с чтения нормативной документации, либо нарисуй «вот это» по такому примеру. Вообще, нормативная литература изучается по ходу работы, проектирования.

Невозможно прочитать всю нормативную литературу, относящуюся к твоей специальности или, даже, более узкой специализации. Тем более, что ГОСТ, СНиП и другие нормативы периодически обновляются. И каждому проектировщику приходится отслеживать изменения и новые требования нормативных документов, изменения в линейках производителей электрооборудования, постоянно поддерживать свою квалификацию на должном уровне.

Помните, как Льюиса Кэролла в «Алисе в Стране Чудес»?

Это я не к тому, чтобы поплакаться «как тяжела жизнь проектировщика» или похвастаться «смотрите, какая у нас интересная работа». Речь сейчас не об этом. Учитывая такие обстоятельства, проектировщики перенимают практический опыт от более опытных коллег, многие вещи просто знают как делать правильно, но не знают почему. Работают по принципу «Здесь так заведено».

Порой, это достаточно элементарные вещи. Знаешь, как сделать правильно, но, если спросят «Почему так?», ответить сразу не сможешь, сославшись хотя бы на название нормативного документа.

В этой статье я решил структурировать информацию, касающуюся условных обозначений, разложить всё по полочкам, собрать всё в одном месте.

Выключатель с подсветкой своими руками

Цепь подсветки можно собрать и установить самостоятельно. Особенно это актуально для выключателей старого образца – у них подсвечивающие цепочки отсутствуют, но есть достаточно места внутри для размещения элементов и достаточно площади на фронтальной панели для установки лампочки. На современных выключателях возникает проблема поиска места для установки светового излучателя, поэтому во многих случаях проще купить соответствующий аппарат. Но бывает сложно приобрести, например, трехклавишный включатель с подсветкой. Или нужен двойной выключатель с индикацией на каждую пару контактов. Поэтому цепь освещения придется делать самостоятельно.


Трехклавишный включатель с самодельной индикацией.

В основном проблема создания цепочки подсвечивания сводится к выбору схемы, расчету и подбору балласта.

Если выбрана схема с гасящим резистором, то он рассчитывается так:

  1. Определяется падение напряжения на балласте Uбал=Uсети-Uлампы. На открытом светодиоде упадет не более 3 вольт, поэтому для практических расчетов можно принять, что к резистору приложится все сетевое напряжение Uбал=310 вольт (надо брать амплитудное, а не действующее значение в 220 вольт). Для неоновой лампы надо руководствоваться напряжением зажигания, а оно составляет от десятков до сотен вольт. Если этот параметр для конкретной лампы неизвестен, надо задаться напряжением 150 вольт, и на гасящем элементе упадет Uбал=310-150=160 вольт.
  2. Выбирается рабочий ток излучающего элемента. Для светодиода можно выбрать Iраб=1..3 мА, для неонки – Iраб=0,5..1 мА.
  3. Сопротивление балласта будет равно Rбал=Uсети/Iраб. Если ток в миллиамперах, то сопротивление будет в килоомах.
  4. Мощность балластного резистора Pбал=Uбал*Iраб. Если в схеме не применен дополнительный диод, полученное значение можно разделить на два.

Если в качестве элемента гашения напряжения выбран конденсатор, то расчет производится по формуле С=4,45*Iраб/(U-Uд), где:

  • С – необходимая емкость в мкФ;
  • Iраб — рабочий ток светодиода;
  • U-Uд — разница между напряжением питания и падением напряжения на светоизлучающем элементе (напряжением зажигания неоновой лампы).

Выбирается ближайший стандартный номинал конденсатора. Желательно округлять в меньшую сторону, но следить, чтобы рабочий ток чрезмерно не уменьшился. В качестве диода можно применить любой полупроводниковый прибор) на обратное напряжение не менее 400 В (ток не играет решающего значения). Можно подобрать подходящий по габаритам из серии 1N400X.

Дальше надо просверлить отверстие в выбранном месте панели выключателя, вклеить светоэлемент, собрать цепочку индикации, подсоединить ее к клеммам коммутационного аппарата. После этого можно подключить выключатель с установленным индикатором на место и опробовать работу подсветки.

Особенности подключения

Контакты двухклавишного выключателя

Для понимания особенностей подключения стандартного выключателя потребуется изучить принцип его работы. В качестве примера, удобного для описания, выбрана разновидность приборов с одной клавишей.

  • переключатель всегда устанавливается в разрыв фазного провода, второй конец которого отводится либо к распределительной коробке, либо прямо к светильнику;
  • с двух сторон имеется только два провода, причем каждый из них предназначен для своих целей;
  • один из них прокладывается до выключателя от линейного автомата и постоянно находится под напряжением;
  • на втором проводе оно отсутствует, из-за чего подключенный к выключателю осветительный прибор не горит.

Сетевые 220 Вольт поступают на него только после нажатия на кнопку или клавишу при переведении ее в режим «Включено». После этого исправный светильник или лампочка сразу же загораются.

При подключении трехклавишного выключателя распределение функций каждого из контактов то же самое. Но в этом случае со стороны отвода проводников к распределительной коробке или люстре располагается два контакта, служащие для коммутации различных групп лампочек. Соответственно, количество обозначений становится большим на одно. То же самое наблюдается при использовании трехклавишного изделия, у которого число контактов и отводящих проводников увеличивается еще на единицу. Знание этих особенностей устройства коммутирующего прибора поможет расшифровать маркировку L на выключателе.

Как выключить устройство без использования кнопки питания

Если это вообще возможно, избегайте просто отключения питания вашего компьютера или любого другого устройства! Завершение работы процессов на вашем ПК, смартфоне или другом устройстве без «хедс-апа» в операционной системе никогда не будет хорошей идеей по причинам, о которых вы уже читали.

Еще одна причина, по которой вам может потребоваться выключить или перезагрузить компьютер без использования кнопки питания, — это если кнопка сломана и не будет работать так, как должна. Это может происходить как на телефонах, так и на компьютерах.

См. Как перезагрузить компьютер? за инструкциями по правильному выключению компьютера с Windows . См. Как перезапустить что-нибудь для получения дополнительной информации об отключении компьютеров, планшетов, смартфонов и других устройств.

Графические обозначения в электрических схемах

В части графических обозначений в электрических схемах ГОСТ 2.702-2011 ссылается на три других ГОСТ:

  • ГОСТ 2.709-89 «ЕСКД. Обозначения условные проводов и контактных соединений электрических элементов, оборудования и участков цепей в электрических схемах».
  • ГОСТ 2.721-74 «ЕСКД. Обозначения условные графические в схемах. Обозначения общего применения»
  • ГОСТ 2.755-87 «ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения».

Условные графические обозначения (УГО) автоматов, рубильников, контакторов, тепловых реле и прочего коммутационного оборудования, которое используется в однолинейных схемах электрических щитов, определены в ГОСТ 2.755-87.

Однако, обозначение УЗО и дифавтоматов в ГОСТ отсутствует. Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено. А пока, каждый проектировщик изображает УЗО по собственному вкусу, тем более, что ГОСТ 2.702-2011 это предусматривает. Достаточно привести обозначение УГО и его расшифровку в пояснениях к схеме.

Дополнительно к ГОСТ 2.755-87 для полноты схемы понадобится использование изображений из ГОСТ 2.721-74 (в основном для вторичных цепей).

Все обозначения коммутационных аппаратов построены на четырех базовых изображениях:

с использованием девяти функциональных признаков:

Наименование Изображение
1. Функция контактора
2. Функция выключателя
3. Функция разъединителя
4. Функция выключателя-разъединителя
5. Автоматическое срабатывание
6. Функция путевого или концевого выключателя
7. Самовозврат
8. Отсутствие самовозврата
9. Дугогашение
Примечание: Обозначения, приведенные в пп. 1 — 4, 7 — 9, помещают на неподвижных контактах, а обозначения в пп. 5 и 6 — на подвижных контактах.

Основные условные графические обозначения, используемые в однолинейных схемах электрических щитов:

Наименование Изображение
Автоматический выключатель (автомат)
Выключатель нагрузки (рубильник)
Контакт контактора
Тепловое реле
УЗО
Дифференциальный автомат
Предохранитель
Автоматический выключатель для защиты двигателя (автомат со встроенным тепловым реле)
Выключатель нагрузки с предохранителем (рубильник с предохранителем)
Трансформатор тока
Трансформатор напряжения
Счетчик электрической энергии
Частотный преобразователь
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления автоматически
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством вторичного нажатия кнопки
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством вытягивания кнопки
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством отдельного привода (например, нажатия кнопки-сброс)
Контакт замыкающий с замедлением, действующим при срабатывании
Контакт замыкающий с замедлением, действующим при возврате
Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Контакт размыкающий с замедлением, действующим при срабатывании  
 Контакт размыкающий с замедлением, действующим при возврате  
 Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Катушка контактора, общее обозначение катушки реле
Катушка импульсного реле
Катушка фотореле
Катушка реле времени
Мотор-привод
Лампа осветительная, световая индикация (лампочка)
Нагревательный элемент
Разъемное соединение (розетка):гнездоштырь
Разрядник
Ограничитель перенапряжения (ОПН), варистор
Разборное соединение (клемма)
Амперметр
Вольтметр
Ваттметр
Частотометр

Обозначения проводов, шин в электрических щитах определяется ГОСТ 2.721-74.

Наименование Изображение
Линия электрической связи, провода, кабели, шины, линия групповой связи
Защитный проводник (PE) допускается изображать штрихпунктирной линией
Графическое разветвление (слияние) линий групповой связи
Пересечение линий электрической связи, линий групповой связи электрически не соединенных проводов, кабелей, шин, электрически не соединенных
Линия электрической связи с одним ответвлением
Линия электрической связи с двумя ответвлениями
Шина (если необходимо графически отделить от изображения линии электрической связи)
Ответвление шины
Шины, графически пересекающиеся и электрически не соединенные
Отводы (отпайки) от шины

⇡ История значка @ — где «собака» зарыта

У знака @ есть множество имен. Есть официальное имя — «коммерческое at». А есть еще масса прозвищ, которые пользователи активно выдумывают на ходу. Какие только клички не присваивались этому знаку — «ухо», «загогулина», «хобот», «бублик», «плюшка», «обезьяна», «баран» и еще десятки других. Ну а самое популярное имя (по крайней мере, в России) — «собака».

Любопытно, что ассоциация с разными животными у пользователей различается, в зависимости от места проживания. Например, на Тайване этот знак зовут «мышкой» (как они только не путаются при этом с компьютерной мышью?), в Венгрии это — «червяк» и «клещ», в Греции — «уточка», в Италии — «улитка». В Финляндии этот знак называют «кошачий хвостик» или «мяу-мяу». Проголодавшиеся пользователи из Чехии и Словакии видят в нашей «собаке» вполне съедобный рулетик из сельди — «рольмопс», а в Израиле его и вовсе называют «штрудель».

Но почему же у нас прижилась «собака»? Видимо, есть причины, по которым именно это животное ассоциируется у наших пользователей с @. Возможно, все началось с восьмидесятых годов, когда в СССР была произведена линейка ЭВМ под названием ДВК («диалоговый вычислительный комплекс»). Специфическое отображение этого знака на дисплее делало @ (при наличии воображения) похожим на собачку. И этот символ отображался на экране при каждом включении ДВК.

Имеется также версия, что произношение английского at созвучно с лаем собаки. А еще, по словам геймеров с большим стажем, в девяностых годах существовала компьютерная игра Adventure с текстовой графикой, где у главного героя был помощник — собака. На экране она была показана знаком @. Несмотря на наши тщательные поиски, найти этот раритет нам так и не удалось.

Какая из вышеперечисленных версий правильная — вряд ли кто-нибудь сможет сказать точно. Выбирайте любую.

Особый смысл знаку @ придал программист Рэймонд Сэмюэль Томлинсон (Raymond Samuel Tomlinson), который работал в компании BBN (Bolt, Beranek and Newman) и принимал участие в работе над проектом ARPANET — прообразом современной сети Интернет.

Компьютерная сеть ARPANET (Advanced Research Projects Agency Network) была создана в 1969 году с подачи Министерства обороны США как альтернативный и надежный способ передачи данных на расстояние. Спустя два года Томлинсон предложил оригинальный способ отправки электронной почты на разные компьютеры сети ARPANET — разделяя пользователя и имя его компьютера с помощью @.

На клавиатуре было много символов, и теоретически можно было бы взять любой, но тут повлияла игра слов. Дело в том, что символ @ появился задолго до компьютеров и даже присутствовал на печатных машинках в виде отдельной клавиши. Напечатать «собаку» можно было еще в конце XIX века на машинках Underwood.

Знак @ использовался в коммерческой и деловой переписке, обозначая предлог «по», «при» или «на». Так, скажем, если необходимо было написать «цена на товар составит 100 долларов за штуку», достаточно было напечатать @$100. Таким образом, разделив почтовый адрес предлогом at, Рэймонд Томлинсон получил буквальное определение адреса — «такой-то пользователь на (@) таком-то компьютере». По иронии судьбы первое же письмо, посланное с символом @, оказалось спамом — оно содержало бессмысленный набор символов, с помощью которого Рэй проверил работу электронной почты.

Интересно, что программист не сразу осознал значение своего открытия. Более того, демонстрируя отправку и получение электронной почты в сети своему сослуживцу Джерри Барчфилу (Jerry Burchfiel), Томлинсон предупредил: «Знаешь, не говори про это никому. Вообще-то это не то, чем мы должны тут заниматься».

Устройство и принцип работы автоматического выключателя.

На рисунке ниже представлено устройство автоматического выключателя с комбинированным расцепителем, т.е. имеющий и электромагнитный и тепловой расцепитель.

  • 1 — корпус;
  • 2,3 — нижняя и верхняя винтовые клеммы для подключения провода;
  • 4 — неподвижный контакт;
  • 5 — подвижный контакт;
  • 6 — дугогасительная камера;
  • 7 — гибкий проводник (применяется для соединения подвижных частей автоматического выключателя);
  • 8 — механизм взвода и расцепления
  • 9 — катушка электромагнитного расцепителя;
  • 10 — рычаг управления;
  • 11 — тепловой расцепитель (биметаллическая пластина);
  • 12 — регулировочный винт;

Синими стрелками на рисунке показано направление протекания тока через автоматический выключатель.

Основными элементами автоматического выключателя являются электромагнитный и тепловой расцепители:

Электромагнитный расцепитель обеспечивает защиту электрической цепи от токов короткого замыкания. Он представляет из себя катушку с находящимся в ее центре сердечником который установлен на специальной пружине, ток в нормальном режиме работы проходя по катушке согласно закону электромагнитной индукции создает электромагнитное поле которое притягивает сердечник внутрь катушки, однако силы этого электромагнитного поля не хватает что бы преодолеть сопротивление пружины на которой установлен сердечник.

При коротком замыкании ток в электрической цепи мгновенно возрастает до величины в несколько раз превышающей номинальный ток автоматического выключателя, этот ток короткого замыкания проходя по катушке электромагнитного расцепителя увеличивает электромагнитное поле воздействующее на сердечник до такой величины, что его силы втягивания хватает на то что бы преодолеть сопротивление пружины, перемещаясь внутрь катушки сердечник размыкает подвижный контакт автоматического выключателя обесточивая цепь:

При коротком замыкании (т.е. при мгновенном возрастании тока в несколько раз) электромагнитный расцепитель отключает электрическую цепь за доли секунды.

Тепловой расцепитель обеспечивает защиту электрической цепи от токов перегрузки. Перегрузка может возникнуть при включении в сеть электрооборудования общей мощностью превышающей допустимую нагрузку данной сети, что в свою очередь может привести к перегреву проводов разрушению изоляции  электропроводки и выходу ее из строя.

Тепловой расцепитель представляет из себя биметаллическую пластину. Биметаллическая пластина — эта пластина спаянная из двух пластин различных металлов (металл «А» и металл «В» на рисунке ниже) имеющих разный коэффициент расширения при нагреве.

При прохождении по биметаллической пластине тока превышающего номинальный ток автоматического выключателя пластина начинает нагреваться, при этом металл «B» имеет больший коэффициент расширения при нагреве, т.е. при нагреве он расширяется быстрее чем металл «A», что приводит к искривлению биметаллической пластины, искривляясь она воздействует на механизм расцепителя, который размыкает подвижный контакт.  В простой схеме это выглядит так:

Время срабатывания теплового расцепителя зависит от величины превышения тока электросети номинального тока автомата, чем больше это превышение тем быстрее сработает расцепитель.

Как правило тепловой расцепитель срабатывает при токах в 1,13-1,45 раз превышающих номинальный ток автоматического выключателя, при этом токе превышающем номинальный в 1,45 раза тепловой расцепитель отключит автомат через 45 мин — 1 час.

Время срабатывания автоматических выключателей определяется по их время-токовым характеристикам (ВТХ)

При любом отключении автоматического выключателя под нагрузкой на подвижном контакте образуется электрическая дуга которая оказывает разрушающее воздействие на сам контакт, причем чем выше отключаемый ток, тем мощнее электрическая дуга и тем большее ее разрушающее воздействие. Для сведения к минимуму ущерба от электрической дуги в автоматическом выключателе она направляется в дугогасительную камеру, которая состоит из отдельных, параллельно установленных пластин, попадая между этих пластин электрическая дуга дробится и затухает.

Обозначения на корпусе

Помимо обозначения L на выключателе осветительных устройств у его рабочих контактов или на корпусе встречаются другие символы и значки.

Чаще всего производители используют символический принцип маркировки двух состояний коммутирующего прибора – включено и выключено. В качестве таких символов традиционно применяются интуитивно понятные нуль и единица («0» и «1»). Первый из них соответствует состоянию «Выключено» или ВЫКЛ и располагается в самой нижней зоне корпуса электрического прибора. Второй значок означает «Включено» (ВКЛ) и наносится в верхней части. Встречаются и такие редкие обозначения как стрелки, указывающие направление коммутации.

Источник

Значки на панели, обозначающие неисправности

Красные индикаторы – самые серьёзные:

  1. понижение уровня давления масла показывается изображением красной маслёнки, двигаться нельзя, мотор быстро придёт в негодность;
  2. красный термометр означает перегрев антифриза или масла;
  3. восклицательный знак внутри круга указывает на неисправность тормозной системы;
  4. изображение аккумуляторной батареи означает отсутствие тока заряда, неисправность генератора;
  5. надписи типа «SRS», «AIRBAG» или пиктограммы сиденья с ремнём сигнализируют о катастрофических отказах в системе безопасности;
  6. ключ или замок означают невозможность доступа к машине по вине охранных систем;
  7. шестерёнки, надписи «AT» или иные трансмиссионные термины, иногда с термометром, означают перегрев агрегатов, выход в аварийный режим до охлаждения;
  8. красное рулевое колесо указывает на неисправность усилителя руля;
  9. простые и понятные индикаторы сигнализируют о незакрытых дверях, капоте, багажнике или непристёгнутых ремнях безопасности.

Абсолютно все индикаторы представить невозможно, автопроизводители не всегда придерживаются устоявшейся системы. Но именно цветовая кодировка позволяет быстро принимать решение, обеспечивающее максимальную безопасность и минимальный ущерб техническому состоянию.

Помните, что вся необходимая информация по расшифровке любого из значков находится в самых первых разделах инструкции по эксплуатации конкретной модели автомобиля.

Кнопка выключения компьютера не спасает при отсутствии сетевого фильтра

Оставлять компьютер практически постоянно включенным в сеть не разумно и опасно. Временами происходят скачки напряжения в сети, хотя с этими факторами справляются сетевые фильтры питания, но к сожалению не на все сто процентов. Зачем оставлять долю риска на то, что компьютер может быть повреждён, будучи якобы выключенным, но остающимся под питанием?

Избавится от возможной проблемы достаточно просто, следует выключать питание на подходе к компьютеру. Для этого как правило имеется механический выключатель на сетевом фильтре питания. Операция не сложная, а позволит исключить случайные воздействия от помех и выбросов, поступающих по силовой сети.

К тому же в дежурном режиме потребление энергии компьютером значительно меньше, а это означает, что и сопротивление по переменному току у него выше. И при бросках напряжения влияние на блок питания оказывается горазд большее, нежели при рабочем режиме включенного компьютера.

Если же ещё заботится об экономии электрической энергии, что в современных условиях роста тарифов становится всё более актуальным. Оставлять компьютер подключенным к питающей сети, так же сказывается на расходе электричества, как от телевизора или аудио центра, находящегося в дежурном состоянии, когда его можно включать при помощи дистанционного пульта.

Монтаж и механические параметры

Коммутатор можно встроить в схему разными способами. Основным делением в этом отношении является разделение на элементы для панельного монтажа и на печатной плате. Это не строгая классификация, так как есть много переключателей припаянных к печатным платам, но предназначенных для применения в панелях.

Выключатели панельного монтажа снабжены элементами, позволяющими монтировать их в корпусе. Обычно они имеют резьбовые корпуса, которые позволяют затягивать их гайкой, но производители также используют и другие решения. Выводы адаптированы для THT, SMD или кабельной сборки.

Виды и типы электрических схем

Прежде, чем говорить об условных обозначения на схемах, нужно разобраться, какие виды и типы схем бывают. С 01.07.2009 на территории РФ введен в действие ГОСТ 2.701-2008 «ЕСКД. Схемы. Виды и типы. Общие требования к выполнению».
В соответствии с этим ГОСТ, схемы разделяются на 10 видов:

  1. Схема электрическая
  2. Схема гидравлическая
  3. Схема пневматическая
  4. Схема газовая
  5. Схема кинематическая
  6. Схема вакуумная
  7. Схема оптическая
  8. Схема энергетическая
  9. Схема деления
  10. Схема комбинированная

Виды схем подразделяются на восемь типов:

  1. Схема структурная
  2. Схема функциональная
  3. Схема принципиальная (полная)
  4. Схема соединений (монтажная)
  5. Схема подключения
  6. Схема общая
  7. Схема расположения
  8. Схема объединенная

Меня, как электрика, интересуют схемы вида «Схема электрическая». Вообще, описание и требования к схемам приведены в ГОСТ 2.701-2008 на примере электрических схем, но с 01 января 2012 действует ГОСТ 2.702-2011 «ЕСКД. Правила выполнения электрических схем». Большей частью текст этого ГОСТ дублирует текст ГОСТ 2.701-2008, ссылается на него и другие ГОСТ.

ГОСТ 2.702-2011 подробно описывает требования к каждому виду электрической схемы. При выполнении электрических схем следует руководствоваться именно этим ГОСТ.

ГОСТ 2.702-2011 дает следующее определение понятия электрической схемы: «Схема электрическая — документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи». Далее ГОСТ ссылается на документы, регламентирующие правила выполнения условных графических изображения, буквенных обозначений и обозначений проводов и контактных соединений электрических элементов. Рассмотрим каждый отдельно.

Включение и отключение знаков форматирования

Примечание:

Мы стараемся как можно оперативнее обеспечивать вас актуальными справочными материалами на вашем языке. Эта страница переведена автоматически, поэтому ее текст может содержать неточности и грамматические ошибки

Для нас важно, чтобы эта статья была вам полезна. Просим вас уделить пару секунд и сообщить, помогла ли она вам, с помощью кнопок внизу страницы

Для удобства также приводим ссылку на оригинал (на английском языке) .

При создании сообщения электронной почты, может появиться некоторые символы в пределах текста. Эти фактически форматировании знаки, такие как точки (для пробелов) или стрелки (для символов табуляции) в Outlook. Знаки форматирования оказание помощи макет текста. Они не отображаются на напечатанное сообщение.

Когда знаки форматирования Включение и отключение, выбранных параметров продолжит действовать для всех последующих сообщений составьте, ответить или переслать.

Быстро переключаться знаки форматирования

Чтобы отключение знаков форматирования, выполните указанные ниже действия.

В окне сообщения на вкладке Формат текста в группеАбзац нажмите кнопку, которая выглядит как знак абзаца. (При наведении указателя мыши на кнопку, всплывающая подсказка называетсяПоказать или скрыть ¶ ).Сочетание клавиш
СОЧЕТАНИЕ КЛАВИШ CTRL + SHIFT + *. (Знак «звездочка» необходимо использовать на 8 ключ.)

support.office.com