Содержание
- Характеристики хладагента R12
- Как выбирать фреон и заправлять кондиционер
- Когда нужно менять хладагент
- История происхождения
- R600a
- Новые хладагенты R407C и R410A для замены устаревшего R22
- Чем отличается фреон 134 от 600
- Вязкость масла
- Как подобрать минеральное масло для фреона
- Можно ли заменить 600 фреон на 134?
- Применение фреонов
- Чем заменить фреон R-12
- R600a (изобутан)
- Аналоги и заменители хладона R12
- Так что из себя представляют фреоны?
- Область V — Граничная область.
- Характеристики фреона R32 (таблицы)
- Синтетические масла
- Вред фреона и его влияние на озоновый слой
- Альтернативные аналоги R12
Характеристики хладагента R12
Это бесцветный газ, имеет специфический запах. В эксплуатации безопасен, не взрывается. Разлагается при температуре свыше 330 градусов. В таком случае возможно выделение газа – фосгена. При концентрации в помещении более 30 % развивается удушье.
Химически не связывается ни с какими металлами, поэтому не повреждает детали кондиционеров изнутри. Утечки происходят из-за повышенной текучести, при которой вещество проникает через мельчайшие щели и нестыковки. Способен просачиваться через естественные поры в чугуне. Это свойство имеет обратную сторону: масло, которое добавляется в холодильную жидкость, благодаря текучести проникает между всеми деталями, снижая коэффициент трения и продлевая срок эксплуатации.
Как выбирать фреон и заправлять кондиционер
Для начала нужно определиться с тем, какой хладагент ранее заливался в систему. Вся необходимая информация указана в техпаспорте и рекомендациях по эксплуатации от автоконцерна. Однако, есть и другой способ узнать, залит был R12 или R134a: если автомобиль был выпущен до 92-го года, в нем с вероятностью почти 100% используется первый фреон. В небольших количествах кондиционеры, использующие R12, производятся и для современных иномарок.
Найдите под капотом кондиционерные магистрали. Их будет две: давления высокого и давления низкого. Магистраль высокого давления выполнена из трубок наименьшего диаметра. Соединив станцию через переходник с магистралью, запустите двигатель (так фреон начнет двигаться по фреонопроводу) и следите за показателями давления. Норма: от 250 до 270 кПа. Оптимальное давления колеблется между 280 и 290 кПа.
Осталось провести дозаправку кондиционера. Килограммового баллона с фреоном будет достаточно для нескольких заправок. При этом вам нужна все та же манометрическая станция. Шлангами вам нужно соединить систему с баллоном и манометрическим коллектором. При этом двигатель автомобиля должен работать на холостом ходу при оборотах до 2000. Кондиционер переводится в режим рециркуляции. Далее следует сама заправка: раз в 2-3 минуты нужно открутить кран манометра, следя за показаниями давления. Как только показатели станут оптимальными, заправку можно прекращать.
Заметьте: внутрь магистрали ни в коем случае не должны попадать пыль и грязь. Дозаправку рекомендуется производить как можно быстрее. Лучшие для этого места: сухие, чистые и прохладные помещения. Для наглядности посмотрите видео в конце материала.
Когда нужно менять хладагент
Утечки в кондиционерах происходят всегда, как бы плотно не была запаяна конструкция. Вопрос в том, сколько и чего нужно доливать, если вещество испаряется или вытекло. Жидкость R12 имеет большое преимущество – она состоит только из молекул дифтордихлорметана. Если вещество испаряется, то доливать нужно только его. Есть хладагенты, которые испаряют какой-либо один химический элемент, входящий в состав. Приходится высчитывать, сколько и чего дозаправлять в процентном отношении.
Если кондиционер начинает барахлить, не вырабатывает то количество холода, которое заявлено, значит пора делать заправку. Но по имеющимся ценам на вещество R12 стоит подумать – не легче ли его стравить и купить заменитель фреона R12. Их насчитывается более сотни, так что выбор есть. Осталось выяснить, какой лучше, дешевле, меньше испаряется, дает больше холода.
История происхождения
В 1989 году был подписан Монреальский протокол по веществам, разрушающим озоновый слой. Под него попадали такие хладагенты как R22 и R13B, как озоноразрушающие (из-за присутствия в их составе хлора). Для их замены был разработан новый фреон R-410A.
Изначально его использовали для замены устаревших хладагентов (если позволяли характеристики систем). Впоследствии было разработано оборудование, которое могло работать на хладагенте r410a, но не на r22 или r13b. Оно отличалось компактностью и низким энергопотреблением.
За счет этого новые модели стали пользоваться популярностью, хоть и были несколько дороже. Когда производители хладагентов снизили стоимость нового вида фреона, на него перешли изготовители бытовой и коммерческой холодильной и кондиционерной техники. Сейчас хладагент в некоторых сферах используется чаще аналогов, таких как r134a, r404a, r600a, r407c и r507.
После разработки хладагента, многие производители начали патентовать собственные торговые марки. Сейчас полноценными аналогами R410a являются:
- SUVA 9100;
- AZ 20;
- Forane 410a;
- Solkane 410.
Торговая марка Genetron AZ 20 — полный аналог R410a
R600a
Характеристики фреона R600a несколько хуже, чем характеристики R134a или R12. Поэтому при замене холодопроизводительность оборудования снизится. Это приводит к трем возможным последствиям:
- Система медленно охлаждается до заданной температуры;
- Оборудование не отключается, если необходимо набрать низкую температуру;
- Техника не может обеспечить охлаждение до минимального уровня.
Хладон R600a – самый простой и экономичный вариант замены CFC-12. Изобутан совместим с минеральными и синтетическими маслами. При заправке его нужно в 3 раза меньше, чем R12 или R134a. Цена R600a гораздо ниже. Предлагаем посмотреть познавательное видео про замену хладагента R12 и R134 на R600a:
Новые хладагенты R407C и R410A для замены устаревшего R22
Несмотря на то, что современный фреон R410A создан для постепенного замещения морально устаревшего R22, прямую замену делать не рекомендуется. Дело в том, что старые холодильные установки не приспособлены под него. В них следует закачивать хладон R422D или 407C. Эти хладагенты адаптированы к тем же условиям эксплуатации, что и R22.
Достоинством нового R410A является не только его безопасность для озонового слоя. Он также обладает более высокой (в 1,5 раза) производительностью по холоду, чем его предшественник R22. Тем не менее такой хладагент растворяется только в полиэфирном масле и требует повышенного давления в системе (до 26 атмосфер).
Хладон R407C является многокомпонентной зеотропной смесью, в состав которой входят фреоны R32, R134А и R125. Его достоинством является абсолютная безопасность для человека и озонового слоя. Но при малейшей утечке система не просто потеряет часть холодильного агента, последствия будут более серьезными. При таком сценарии сначала испаряются более легкие компоненты, что изменяет состав и физические свойства смеси. Устранить данную неисправность можно не доливкой, а полной заменой хладагента новым.
Вывод: система должна быть более прочной и полностью исключающей малейшую утечку.
Чем отличается фреон 134 от 600
Холодильники на r134a работают на синтетическом полиэфирном масле из-за его агрессивности. Установки на r600a используют минеральное масло. Как в случае с автомобильными маслами, синтетика всегда дороже минералки. При этом 600 фреон также может работать на синтетическом.
В системах на 134 фреоне требуется больше газа для нормальной работы. Холодопроизводительность тетрафторэтана на 30% ниже, чем изобутана. Энергопотребление бытовых холодильников и морозильных камер на r134a на 20-40% выше, чем на r600a.
Из-за горючести, компрессоры для работы на фреоне r600a имеют конструктивные особенности. Они дороже двигателей для 134 хладона. Из-за низкой нагрузки при работе у них ниже уровень шума и больше срок работы.
Интересный факт
Хладагент R600a воспламеняется, но быстро сгорает. В системе холодильника его мало, поэтому вероятность пожара низкая. К тому же, техника на 600 фреоне сделана так, чтобы при утечке он скапливался в тех местах, где не сможет загореться. Поэтому и фреон R-290 (пропан) рекомендован для применения в бытовой холодильной технике.
Фреон r134a агрессивен и требователен к качеству масла. Для его работы необходимо высокое давление, поэтому диаметр капиллярных трубок небольшой. Из-за этого они чувствительны к засорам. Благодаря этому вместо него заправляют R600a, который менее прихотливый чем другие аналоги R134a хладагента.
При разложении масла или его низком качестве, 134 хладагент вступает в реакцию с примесями и результатами реакций. Образуются примеси, которые осаждаются на стенках системы. Они уменьшают пропускную способность, образуют засоры. Это может вызвать:
- Снижение производительности холодильника или морозильной камеры;
- Повышенному износу компрессора;
- Более шумной работе техники;
- Обрыву фреоновой магистрали
- Выходу из строя компрессора холодильника.
По информации сервисных центров, со временем фреон R134a реагирует с маслами и приводит к их парафинизации. При этом процессе выделяются вещества, осаждающиеся на стенках фреоновой магистрали и рабочих поверхностях ее узлов.
По опыту мастеров и сервисных центров, через 5-6 лет в капиллярных медных трубках холодильников на r134a хладагенте возникает засор. Он начинает образовываться через 2-3 года после начала эксплуатации, но скапливается постепенно.
У хладагента r600a низкая температура кипения. Рабочие температуры систем ниже, чем у аналогичных на r134a. Они более чувствительны к наличию влаги. Поэтому при заправке, ремонте или обслуживании, их необходимо продувать сухим сжатым азотом.
Вязкость масла
В соответствии с ISO 3488 промышленные масла подразделяются на 18 классов вязкости от 2 до 1500 мм2/с при 40ºС. Каждый класс вязкости обозначается целым числом, а пределы каждого класса составляют ±10% от этого значения. Иногда класс вязкости промышленных масел обозначают без указания ISO, например, VG 10, где VG (Viscosity Grade — марка вязкости) показывает, что это классификация по ISO, а цифра — значение класса вязкости. Следует помнить, что эта классификация не дает оценку качества промышленного масла, а позволяет получить информацию только о кинематической вязкости и только при температуре 40ºС. Вязкость при других температурах зависит от температурно-вязкостных характеристик масел и определяется дополнительно.
Если масло имеет вязкость ниже рекомендованной, то уменьшается толщина базового смазочного слоя. Это приводит к трению поршня о зеркало цилиндра и преждевременному износу. Если масло слишком вязкое, оно не может проникнуть в зазор между поршнем и цилиндром.
Как подобрать минеральное масло для фреона
Масло для фреона R12 необходимо. Оно обеспечивает работу трущихся деталей. Снижение трения увеличивает срок службы компрессора, замена которого – дорогое удовольствие. Смазочные материалы отводят часть тепла, так как масло нагревается дольше. Большое значение имеет степень смешиваемости (растворимости) фреона и масла.
Для фреона R12 используются только минеральные смазочные материалы, изготовленные на основе нефти – нафтеновые и парафиновые
При выборе масла важно знать, что температура застывания и текучести были ниже температуры кипения хладагента
При работе в холодильном оборудовании цель смазки – создание прочной пленки на трущихся деталях. При повышении температуры выше положенного значения поверхностное натяжение масла снижается, а вязкость увеличивается, что препятствует нормальному растворению хладагента и его циркуляции.
Минеральные вещества более чувствительны к температурам. Если происходит перегрев оборудования по каким-либо причинам, нарушается процесс смешивания веществ, повышается кислотность и масло темнеет. После ремонта сливают жидкость и закачивают новую. Повышение кислотности приводит к сгоранию обмотки электродвигателя.
Смазочные материалы для дозаправки холодильного оборудования покупают у надежных поставщиков, так как некачественный состав и наличие в нем воды приводит к химическим процессам внутри кондиционера, что отрицательно сказывается на его работе.
Заправку выполняют, имея все необходимые инструменты, а именно, прибор для вакуумирования системы. Наличие остатков воздуха в системе перед заправкой сказывается на стабильности химического состава фреоно-масляной смеси.
Марка производитель смазочных материалов Mobil Gargoyle Arctic Oil 300 или 155 предлагает высококачественные компоненты для кондиционеров. Из-за депарафинизации (очистки) вещество имеет хорошую текучесть даже при самых низких значениях температуры. Помутнение масла происходит редко – при очень высоких температурах. Смазка очищена от влаги и запечатана в заводскую упаковку. При эксплуатации следует принимать меры, чтобы вода не попала в масло.
Можно ли заменить 600 фреон на 134?
Да, 600 фреон можно заменить на 134. Это нецелесообразно в долгосрочной перспективе. Но если возникла такая потребность, необходимо:
- Заменить компрессор;
- Заменить капиллярную трубку на другой диаметр;
- Промыть систему от старого масла;
- Заправить систему новым синтетическим компрессорным маслом;
- Заменить фильтр.
Проблема замены r600a на r134a – масло. 600 хладагент работает на минеральном, 134 фреон – на синтетическом. При замене необходимо тщательно вымыть всю систему от масла промывочным фреоном R141b. Для уверенности можно продуть ее азотом.
При контакте r134a с минеральными маслами, происходит бурная реакция. При этом смесь вспенивается, может выпадать осадок. Он засоряет капилляры, что приводит к плохой работе техники, обрывам магистрали и поломке компрессора.
В этой статье мы разбирались, какой хладагент лучше: r134a или r600a. Оценили свойства и характеристики обоих газов. Пришли к выводу, что 600 фреон лучше 134. Надеемся, публикация была вам полезна. Не забудьте сохранить ее на стену, поделиться с коллегами и друзьями!
Последние публикации
- Какая морозильная камера лучше, No Frost или обычная
- Топ 10 кондиционеров для квартиры 2020-2021 года
- 30+ причин: Почему холодильник издает странные звуки, как устранить проблему
- 6 брендов и 6 моделей: Какой купить холодильник недорогой, но хороший, с No Frost
- 20+ причин: Почему холодильник работает, но не морозит, в чем проблема, как ее устранить
- Атлант, Бирюса, Indesit – какой холодильник лучше и почему
- Можно ли ставить холодильник рядом с плитой? Как защитить холодильник?
- ТОП-10 лучших производителей и брендов холодильников на сегодняшний день
- Фреон R407c – характеристики, особенности использования и замены
- 13 причин, почему холодильник постоянно работает и не отключается
Применение фреонов
В основном хладоны применяются в морозильном и климатическом оборудовании, а также в установках для тушения пожара. В морозильниках и кондиционерах фреоны выполняют функцию холодильного агента. В данном случае используются их способности:
- поглощать тепло извне при испарении;
- отдавать энергию при конденсации.
Переход из жидкого состояния в газообразное происходит в специальном испарителе, охлаждающем воздух в помещении. Далее фреон в виде газа поступает в конденсатор, где создается высокое давление, там он конденсируется. Данный процесс сопровождается выделением тепла, которое выводится на наружный блок.
Чем заменить фреон R-12
Вот несколько вариантов, чем же можно заменить систему, что работала на 12-ом фреоне.
Во-первых, это, конечно же, фреон CFC-12. Хоть это и банально, но всё-таки лучший вариант, так как ретрофит системы будет дороже. Долговечность системы, в которой произвели замену хладагента, будет завесить от бюджета заказчика и компетенции мастера. Тем более, если не будет грамотной переделки системы, то это, скорее всего, приведёт к снижению хладопроизводительности. Поэтому советую использовать переработанный в заводских условиях чистый Хладон-12 – этот хладагент отвечает всем требованиям в отличие от китайского контрафактного R12.
Заменить хладагент фреон R12 можно пропан-бутановой смесью (ПБС). Также можно попробовать пропаном R-290, н-бутаном R-600 или же изобутаном R-600a. Однако насчёт последних альтернатив 12-ому фреону огромное количество мифов, а практика показала, что пропан-бутановая смесь является лучшим вариантом замены из этого списка. Из минусов этой альтернативы пожароопасность, так как ПБС легковоспламеняющаяся смесь. Если же вы решились перейти на ПБС, то перед использованием необходимо проверить, чтобы контур был абсолютно герметичен и отвакуумирован. Так как вакуумирование – это процесс полного удаления воздуха из системы, то в ней не останется кислорода – нет кислорода – ничего не загорится и не взорвётся. В случае утечки или аварии возможно возгорание.
Ещё одной альтернативой неплохо себя показала специальная смесь, что состоит из HC-600a и HFC-134a. Оба этих газа хорошо смешиваются между собой, а также близки по свойствам с CFC-12.
Транзиту масла в широком температурном диапазоне по всей системе способствует R-600a, а в случае ошибки горению препятствует R-134a. Подобные смеси перевозят контрабандой из Китая в Россию в виде маленьких баллончиках с надписью R12
Четвёртым способ замены – хладагент R-406a. Эта смесь не новое химическое соединение, а специально разработано как эффективная замена для R-12 и R-500. Данный хладагент представляет собой зеотропную смесь из трёх известнейших хладагентов – R-600a, R-142b и R-22, в соотношении 4%/41%/55%. Температурный глайд 9К, также смесь относиться к группе ГХФУ. Из-за того, что хладагент не воспламеняем, он рекомендуется для замены фреонов R12 и R500 в автомобильных кондиционерах и стационарных установках.
Ну и напоследок, фреон R12 можно заменить фреоном HFC-134a. Однако если же вы собираетесь перейти на этот фреон, то обязательно совершите промывку системы и замену масла, иначе это может закончиться клином компрессора. При использовании с этой альтернативой хорошо себя показали PAO-масла.
Также учитывайте, что если не заменить компрессор на более подходящий, то это отрицательно скажется на хладопроизводительности. Впрочем, в автокондиционере это не так уж и страшно.
Возможны повреждения резиновых элементов или утечки в фреонопроводе из-за несовместимости его с синтетическими PAO-маслами.
Рекомендую следующее видео, в котором автор рассказывает про то, чем можно заменить фреон R12:
R600a (изобутан)
Этот хладагент широко применяется для заправки бытовых холодильников. По своим показателям он не хуже R134a, но более дешевый. Для заправки обычного холодильника его требуется меньше. Хотя холодопроизводительность при этом понижается.
Изобутан совместим с минеральными (MO), алкилбензольными (AB) и полиолэфирными (POE) маслами. В идеале, для замены r-134a необходимо менять компрессор. Но при этом затраты не окупаются. В некоторых странах запрещено использование R600a в качестве хладагента из-за его горючести. Подробнее про этот хладагент читайте в статье «Характеристики и свойства фреона R600a (изобутана), рабочее давление, особенности».
R600a не разрушает озоновый слой (OPD=0), оказывает низкое влияние на парниковый эффект (GWP=3). Используется в чистом виде и в составе многокомпонентных хладагентов. Для замены R134a на изобутан не требуется сложный ретрофит системы. Обычно хватает замены уплотнителей и фильтра-осушителя. Более подробное сравнение этих газов вы найдете в публикации «R134a или R600a: какой хладагент лучше, выгоднее, эффективнее».
Аналоги и заменители хладона R12
В холодильном оборудовании, работающем на фреоне R12, используется только минеральный растворитель. Хлор растворяется только в таком виде масла. Заменитель будет содержать либо в небольшом количестве хлор, либо должны применяться горючие газы, которые также можно растворить в минеральном веществе. Здесь нужно решить, что важнее:
- безопасность;
- практичность и хорошо работающее устройство.
Если в холодильник заливают, к примеру, пропан вместо R12, то он работает. Но присутствие более 1 кг такого вещества делает прибор взрывным устройством. При некоторых условиях он способен воспламеняться:
- неправильно смешанные вещества;
- заливка большего количества, чем положено;
- нагревание и расширение объема смеси.
Такая перспектива не радует, поэтому нужно искать дальше. Хлорсодержащий R22 не подходит, так как давление у него выше. Выход нашли и не один. В R22 начали добавлять различные вещества, снижающие давление газа и не мешающие ему растворяться. Все аналоги фреона R12 отличаются добавками к R22.
Вот некоторые из них:
- R21 применяется только в России. Температура кипения у него выше: +8,7 градуса. При эксплуатации со временем может произойти остановка компрессора и повреждение клапана.
- R142B – недорогая добавка. Для разного оборудования подбирают оптимальное соотношение R22 и R142B. Если соединительных узлов больше, тогда 22 будет испаряться быстрее и в процентном соотношении его должно быть больше. Если потенциальных мест протечки меньше, тогда процентное соотношение веществ будет другим – R22 потребуется меньше. Для заправки в кондиционер такой смеси нужно не более 80 % от количества R12.
- R406A – оптимальное соотношение цены и качества, а также хорошей работы оборудования на такой смеси. Вещества под кодом 22 и 142B смешиваются в пропорциях 55 % и 41 % соответственно.
- R401 и 409 – самые дорогие, но хорошие заменители. Их стоимость сопоставима с самим хладоном R12. Переплачивать за экологию пока нет смысла – контролирующие органы в России не ходят по квартирам и не проверяют, какой хладагент циркулирует в системе.
Так что из себя представляют фреоны?
Фрео́н —это газ или жидкость (в зависимости от параметров окружающей среды) без цвета и явного запаха. Фреон химически инертен, не горит на воздухе, в обычной бытовой обстановке взрывобезопасен и совершенно безвреден для человека. Кроме холодильных машин и установок (холодильников), фреон используют как выталкивающую основу в газовых баллончиках, для изготовления аэрозолей в парфюмерии, при тушении пожаров и в качестве вспенивающего вещества (агента) в производстве полиуретана (теплоизоляции, поролона и т.п.).
Химически – фреоны это галогеноалканы, фторсодержащие производные насыщенных углеводородов (главным образом метана и этана), используемые как хладагенты в холодильных машинах (например, в кондиционерах). В химическом отношении фреоны очень инертны. Фреон не только не способен воспламениться на воздухе, он даже при контакте с открытым пламенем не взрывается. Однако, если нагреть фреон выше 250°С, образуются очень ядовитые продукты.
Известно более 40 различных фреонов; большинство из них выпускается промышленностью.
Область V — Граничная область.
В 90% случаев приходится работать именно в этой области, так как сжиженный газ, не поддавленный инородным газом, находится в состоянии кипения.
Давление газа соответствует давлению насыщенных паров при данной температуре, кавитационный запас на уровне границы раздела фаз строго равен НУЛЮ.
Располагаемый кавитационный запас системы на входном патрубке насоса определяется высотой столба жидкости относительно входного патрубка минус потери на входном трубопроводе.
В этой области допускается как применение жидкостных насосов так и компрессоров, однако применение жидкостных насосов в этой области связано с преодолением определенных трудностей.
Типичная проблема при эксплуатации ЖИДКОСТНЫХ НАСОСОВ при подаче сжиженных газов — насос не качает, срывает поток.
Проблемы возникают по причине ошибок в проектировании (редкие, но очень болезненные случаи), из-за ошибок при обвязке насоса по месту, эксплуатации насоса.
Основная причина проблем — частичный или полный переход перекачиваемой среды в газовую фазу в области входного штуцера и/или рабочей камеры жидкостного насоса, кавитационный срыв потока.
Применять жидкостные насосы в этой области надо крайне осторожно, по возможности рекомедуется применять дожимные компрессоры или насос-компрессоры. Достаточно часто на практике мы встречаемся с применением жидкостных насосов в этой области, так как это наиболее экономически эффективное решение (иногда единственное возможное при применении оборудования Haskel). Пример: Подача сжиженного газа в процесс под давлением, превышающим давление на входе в 36 и более раз
Пример: Подача сжиженного газа в процесс под давлением, превышающим давление на входе в 36 и более раз
Достаточно часто на практике мы встречаемся с применением жидкостных насосов в этой области, так как это наиболее экономически эффективное решение (иногда единственное возможное при применении оборудования Haskel). Пример: Подача сжиженного газа в процесс под давлением, превышающим давление на входе в 36 и более раз.
Если Вам приходится эксплуатировать жидкостные насосы в этой области рекомендуем учесть следующие рекомендации:
- Предусмотрите линию сброса газа на нагнетании насоса — это позволит Вам предварительно заполнить насос жидкой фазой перед пуском насоса
- Обеспечьте максимальный кавитационный запас системы NPSHa — превышение давление на входе в насос над давлением насыщенных паров, для этого:
- По возможности уберите местные сопротивления на входной магистрали: запорные, регулирующие клапаны, фильтры, сужения потока, резкие повороты потока.
- При выборе места установки насоса нужно помнить, что труба — не только источник дополнительного сопротивления, но и источник подвода теплоты. Устанавливайте насос как можно ближе к питающему резервуару, обеспечьте теплоизоляцию всасывающего трубопровода.
- Устанавливайте насос как можно ниже уровня резервуара, в идеале — на нижних этажах, в подвале и проч. Каждый метр заглубления насоса ниже уровня жидкости в резервуаре значительно снижает риск разрыва потока на входе.
- По возможности обеспечьте постоянный расход через насос, при низкой скорости потока и особенно при остановке насоса жидкость успевает нагреваться за счет теплообмена с окружающей средой что приводит к срыву потока.
- Обеспечьте наилучшие кавитационные характеристики насоса:
- Применяйте по возможности двухплунжерную конструкцию, исплонения для отключения пневматического привода на цикле всасывания.
- По возможности ограничивайте скорость насоса, особенно на цикле всасывания.
Если все вышеперечисленное не помогло:
- Обеспечьте местное охлаждение входного трубопровода непосредственно перед входным штуцером насоса.
- Поставьте один или несколько дожимных компрессоров или насос-компрессоров перед насосом. Установки с компрессором первой ступени и насосом второй ступени обычно сводят риск срыва потока к нулю.
Характеристики фреона R32 (таблицы)
Общие технические характеристики r32
Параметр | Значение |
---|---|
Название | Дифторметан |
Химическая формула | CH2F2 |
Молекулярная масса | 52,02 г/моль |
Температура кипения | -51,65 °С |
Температура плавления | -136 °С |
Растворимость в воде при 25 °С | 0,44% |
Плотность (жидкость) при 25 °С | 1,052 г/см3 |
Плотность (газ) при 25 °С | 0,961 кг/м3 |
Плотность (жидкость) при -51,65 °С | 1,21 г/см3 |
Критическая плотность | 0,425 г/см3 |
Критический объем | 121 см3/моль |
Критическая температура | +78,4 °С |
Критическое давление | 5,843 Мпа |
Температура самовоспламенения | +648 °С |
Потенциал глобального потепления GWP (100 лет) | 675 |
Потенциал разрушения озонового слоя ODP | — |
Внешний вид | Бесцветный |
Предельно допустимая концентракия (мг/м3) | 3000 |
Предельно допустимая концентракия (ppm) | 1000 |
Динамическая (абсолютная) вязкость
Абсолютная вязкость | Значение |
---|---|
Газа при +5 °С | 0,0132 сПуаз |
Газа при +50 °С | 0,0122 сПуаз |
Жидкости при +5 °С | 0,188 сПуаз |
Жидкости при +50 °С | 0,099 сПуаз |
Чем выше значение параметра вязкость, тем более тягучая (вязкая) жидкость; чем меньше вязкость, тем он более жидкий (текучий).
Теплопроводность
Теплопроводность на линии насыщения | Значение |
---|---|
Газа при +5 °C | 0,010 Вт/(м*K) |
Газа при +50 °C | 0,012 Вт/(м*K) |
Жидкости при +5 °C | 0,143 Вт/(м*K) |
Жидкости при +50 °C | 0,107 Вт/(м*K) |
Зависимость давления и температуры
T, °C | P, barA | P, barg | P, psig | T, °C | P, barA | P, barg | P, psig |
---|---|---|---|---|---|---|---|
-70 | 0,36 | -0,65 | -9,46 | 2 | 8,66 | 7,65 | 110,95 |
-68 | 0,41 | -0,61 | -8,77 | 4 | 9,22 | 8,21 | 119,07 |
-66 | 0,46 | -0,55 | -8,02 | 6 | 9,81 | 8,80 | 127,58 |
-64 | 0,52 | -0,50 | -7,19 | 8 | 10,43 | 9,41 | 136,49 |
-62 | 0,58 | -0,43 | -6,27 | 10 | 11,07 | 10,06 | 145,81 |
-60 | 0,65 | -0,36 | -5,27 | 12 | 11,74 | 10,73 | 155,57 |
-58 | 0,73 | -0,29 | -4,17 | 14 | 12,45 | 11,43 | 165,76 |
-56 | 0,81 | -0,21 | -2,98 | 16 | 13,18 | 12,17 | 176,41 |
-54 | 0,90 | -0,12 | -1,67 | 18 | 13,95 | 12,93 | 187,53 |
-52 | 1,00 | -0,02 | -0,26 | 20 | 14,75 | 13,73 | 199,13 |
-50 | 1,10 | 0,09 | 1,28 | 22 | 15,58 | 14,57 | 211,21 |
-48 | 1,22 | 0,20 | 2,95 | 24 | 16,45 | 15,44 | 223,81 |
-46 | 1,34 | 0,33 | 4,75 | 26 | 17,35 | 16,34 | 236,93 |
-44 | 1,47 | 0,46 | 6,69 | 28 | 18,30 | 17,28 | 250,59 |
-42 | 1,62 | 0,61 | 8,78 | 30 | 19,28 | 18,26 | 264,80 |
-40 | 1,77 | 0,76 | 11,04 | 32 | 20,29 | 19,28 | 279,57 |
-38 | 1,94 | 0,93 | 13,45 | 34 | 21,35 | 20,34 | 294,93 |
-36 | 2,12 | 1,11 | 16,05 | 36 | 22,45 | 21,44 | 310,89 |
-34 | 2,31 | 1,30 | 18,82 | 38 | 23,60 | 22,58 | 327,47 |
-32 | 2,52 | 1,50 | 21,79 | 40 | 24,78 | 23,77 | 344,67 |
-30 | 2,73 | 1,72 | 24,96 | 42 | 26,01 | 25,00 | 362,51 |
-28 | 2,97 | 1,95 | 28,34 | 44 | 27,29 | 26,28 | 381,05 |
-26 | 3,22 | 2,20 | 31,94 | 46 | 28,62 | 27,60 | 400,24 |
-24 | 3,48 | 2,47 | 35,77 | 48 | 29,99 | 28,98 | 420,15 |
-22 | 3,76 | 2,75 | 39,83 | 50 | 31,41 | 30,40 | 440,79 |
-20 | 4,06 | 3,04 | 44,15 | 52 | 32,89 | 31,87 | 462,17 |
-18 | 4,37 | 3,36 | 48,72 | 54 | 34,42 | 33,40 | 484,33 |
-16 | 4,71 | 3,69 | 53,56 | 56 | 36,00 | 34,98 | 507,27 |
-14 | 5,06 | 4,05 | 58,68 | 58 | 37,64 | 36,62 | 531,02 |
-12 | 5,43 | 4,42 | 64,09 | 60 | 39,33 | 38,32 | 555,63 |
-10 | 5,83 | 4,81 | 69,79 | 62 | 41,09 | 40,08 | 581,10 |
-8 | 6,24 | 5,23 | 75,81 | 64 | 42,91 | 41,90 | 607,49 |
-6 | 6,68 | 5,67 | 82,15 | 66 | 44,79 | 43,78 | 634,81 |
-4 | 7,14 | 6,13 | 88,82 | 68 | 46,75 | 45,73 | 663,11 |
-2 | 7,62 | 6,61 | 95,84 | 70 | 48,77 | 47,76 | 692,45 |
8,13 | 7,12 | 103,21 |
Особые характеристики r32
Приведенная здесь информация будет полезна специалистам. Она вряд ли пригодится людям, работающим с обычными кондиционерами, чиллерами или тепловыми насосами. Приводим характеристики фреона R32:
- Диэлектрическая проницаемость – 26,11 Ф/м при -49,2 °C;
- Стандартная энтальпия образования – -425,3 кДж/моль при +25 °C;
- Стандартная энтропия вещества – 246,7 кДж/(моль*К);
- Стандартная мольная теплоемкость – 42,9 кДж/(моль*К);
- Отношение объемов равных количеств газа и жидкости при 1 атм. и +21 °C – 352;
- Удельная теплота испарения (конденсации) – 360-390 кДж;
- Теплоемкость жидкости на линии насыщения при +25 °C – 2,35 кДж/(кг*°C);
- Молярная теплоемкость газа при постоянном давлении при 1 атм. и +21 °C – 0,043 кДж/(моль*к);
- Молярная теплоемкость газа при постоянном объеме при 1 атм. и +21 °C – 0,034 кДж/(моль*к).
Синтетические масла
Эффективны в работе с озонобезопасными ГФУ-хладагентами. Изготавливаются на базе синтетических полиэфиров. Способны абсорбировать воду, термически стабильны, имеют высокие электроизоляционные и антикоррозийные свойства. Совместимы с полимерами, лаками и красками, проявляют высокое сопротивление гидролизу.
Масла и фреон купить можно в наших магазинах. Цена на фреон и масла зависит от производителя и типа вещества, однако остается вполне обоснованной за счет достойных характеристик продукта. Фреон купить в Москве выгоднее всего будет именно у нас! Оформляйте заказ по телефону или через сайт.
Вред фреона и его влияние на озоновый слой
Хладагенты, которые используются в бытовой технике, являются негорючими и безвредными для людей.
Фреоны R-12, R-22 чаще всего используется в промышленности. Хладон-22 относится к веществам 4-го класса опасности, по шкале «вредности». При значительной концентрации эти фреоны вызывают у человека сонливость, спутанность сознания, слабость переходящую в возбуждение. Может вызвать обморожение при попадании на кожу в жидкой фазе.
Новые фреоны (R134A, R-404, R407C, R507C, R410A и др.) безопасны для человека и окружающей среды, поэтому все ведущие производители климатической техники используют именно эти марки фреона.
Причиной уменьшения озона в стратосфере и образование озоновых дыр является производство и применение хлор- и бромсодержащих фреонов. Попадая после использования в атмосферу, они разлагаются под воздействием ультрафиолетового излучения Солнца. Высвободившиеся компоненты активно взаимодействуют с озоном в так называемом галогеновом цикле распада атмосферного озона.
В связи с пагубным влиянием озоноразрушающего фреона R22, его использование в США и в Европе год от года сокращается, где с 2010 года официально запрещено применять этот фреон. В России также запрещен импорт холодильного оборудования, в том числе кондиционеров промышленного и полу-промышленного класса. На замену фреону R22 должен прийти фреон R410A, а также R407C.
Подписание и ратификация странами ООН Монреальского протокола привело к уменьшению производства озоноразрушающих фреонов и способствует восстановлению озонового слоя Земли.
Для измерения «вредности» фреонов была введена шкала, в которой за единицу был принят озоноразрушающий потенциал фреона R-13, на котором работает большинство старых холодильников. Потенциал фреона R-22 равен 0.05, а новых озонобезопасных фреонов R-407C и R-410A — нулю. Поэтому к настоящему времени большинство производителей, ориентированных на европейский рынок были вынуждены перейти на выпуск кондиционеров, использующих озонобезопасные фреоны 407C и R-410A. Для потребителей такой переход означал повышение как стоимости оборудования, так и расценок на монтажные и сервисные работы. Это было вызвано тем, что новые фреоны по своим свойствам отличаются от привычного R-22. Новые фреоны имеют более высокое давление конденсации — до 26 атмосфер, вместо 16 атмосфер у фреона R-22. Таким образом, все элементы холодильного контура кондиционера должны быть более прочными, а значит и более дорогими.
Озонобезопасные фреоны не являются однородными, то есть они состоят из смеси нескольких простых фреонов. Например, R-407C состоит из трех компонентов — R-32, R-134a и R-125. Это приводит к тому, что даже при незначительной утечке из фреона сначала испаряются более легкие компоненты, изменяя его состав и физических свойства. После этого приходится сливать весь ставший некондиционным фреон и заново заправлять кондиционер. В этом отношении фреон R-410A является более предпочтительным, поскольку он является условно изотропным, то есть все его компоненты испаряются примерно с одинаковой скоростью и при незначительной утечке кондиционер можно просто дозаправить.
Альтернативные аналоги R12
Существуют составные (многокомпонентные) хладагенты, которые признаны пригодными или проходят проверку в Агентстве по охране окружающей среды США (United States Environmental Protection Agency, EPA). Но они еще не имеют классификации в виде R-***a по ASHRAE.
Некоторые производители заявляют, что их альтернативный хладагент не требует замены масла или фильтра осушителя. Другие сообщают, что их смеси более производительные, чем R12. Наиболее качественными и эффективными альтернативными фреонами считаются:
- Free Zone (RB-276), смесь из R-134a (79%), R-142b (19%), масло (2%);
- Freeze 12, смесь из R-134a (80%), R-142b (20%);
- FRIGC (FR-12), смесь из R-134a (59%), R-124 (39%), R-600 (2%);
- GHG-X4, смесь из R-22 (51%), R-124 (28,5%), R-142b (16,5%); R-600a (4%);
- GHG-HP, смесь из R-22 (65%), R-142b (31%), R-600a (4%);
- Hot Shot\Kar Kool, смесь из R-22 (50%), R-124 (39%), R-142b (9,5%), R-600a (1,5%).
Интересный факт
Один из производителей заявил, что он реализовал несколько миллионов фунтов (1 млн фунтов – 453 592 кг!). Из этого можно сделать вывод, что альтернативные хладагенты отвечают стандартам качества и соответствия фреону R12.