Содержание
- 3 Модели на базе теплообменника
- Типы устройств
- Устройство и принцип работы элеватора отопления
- Расчет элеваторного узла
- Элеватор что это такое
- Как работает тепловой пункт с элеваторным узлом смешения
- Назначение
- Расчет и подбор элеватора по номеру
- Как работает элеватор
- Способы циркуляции воды в системах отопления
- Недостатки
- Элеватор водоструйный: конструкция и основные типы
- Устройство и принцип работы элеватора отопления
3 Модели на базе теплообменника
Для подмешивания воды с разной температурой необходимо использовать термостатические клапаны. Подобные системы нормально взаимодействуют с радиаторами из алюминия, но чтобы последние прослужили максимально долго, необходимо тщательно выбирать теплоноситель, отказываясь от низкокачественного сырья. Конечно же, уследить за качеством жидкости проблематично, поэтому лучше отказаться от этого материала, отдав предпочтение биметаллическим или чугунным радиаторам.
Схема подключения ГВС подразумевает использование теплообменника. Такой метод обеспечивает массу плюсов, включая:
- 1. Возможность регулирования температуры воды.
- 2. Возможность изменения давления горячего теплоносителя.
Типы устройств
В зависимости от возможности контролировать температуру воды на выходе различают несколько типов устройств.
Без механизма контроля температуры воды на выходе
Такие элеваторы позволяют уменьшить температуру перегретой воды на фиксированную процентную величину, а возможность контроля температуры на выходе отсутствует. Такие элеваторы сегодня встречаются довольно редко, поскольку существуют недорогие устройства с механизмом контроля.
С механическим контролем
Такие агрегаты оборудованы толстой конусовидной иглой, которая расположена в камере подачи перегретой воды. Эта игла связана со специальным регулировочным валом, который позволяет изменить расположение иглы внутри камеры.
Фото 1. Элеватор с механическим контролем соотношения между горячей и холодной водой в камере разряжения.
При вращении вала игла перемещается в области сопла, что приводит к увеличению или уменьшению зазора между камерой перегретой воды и камерой разряжения. Благодаря этому осуществляется контроль соотношения между перегретой и холодной водой в камере разряжения, что позволяет уменьшить или увеличить температуру смеси. Вращением вала для контроля температуры должен заниматься человек.
С автоматическим блоком управления системой отопления
Такие устройства отличаются от вариантов с механическим контролем температуры тем, что дополнительно оборудованы электронным блоком и сервоприводом.
Фото 2. Таймер с конроллером электронного управления элеватором центрального отопления. Автоматизирует контроль температуры воды.
Все показания с температурных датчиков поступают на электронную плату контроля температуры воды; в случае необходимости запускается сервопривод, который перемещает иглу, что приводит к изменению температуры воды.
Важно! Использование этих устройств позволяет полностью автоматизировать контроль температуры воды, а человек нужен лишь для того, чтобы задать параметры функционирования системы
Устройство и принцип работы элеватора отопления
Элеватор системы отопления состоит из трех основных элементов:
- смесительная камера;
- сопло;
- струйный элеватор.
Дополнительно в конструкции устройства предусматриваются различные термометры с манометрами. Элеваторы также оснащаются запорной арматурой.
Элеватор представляет собой устройство, сделанное из чугуна или стали. Устройство снабжено тремя фланцами. Принцип его работы заключается в следующем:
- разогретая до высоких температур вода движется к элеватору и попадает в его сопло;
- происходит усиление скорости потока теплоносителя при сужающемся сопле и уменьшении давления;
- в то место, где возникло низкое давление, поступает холодная вода из обратного трубопровода;
- обе жидкости (холодная и горячая) перемешиваются в смесительном узле элеватора.
Благодаря холодной воде, поступающей из обратной трубы, в отопительной системе снижается общее давление. Температура теплоносителя опускается до нужного показателя, после чего он распределяется по квартирам жилого дома.
По своей структуре элеваторный узел является устройством, одновременно выполняющим функции и смесителя, и циркуляционного насоса.
Основными достоинствами конструкции являются:
- невысокая стоимость установки в многоквартирных домах;
- несложность самой установки;
- экономия используемого теплоносителя, достигающая 30%;
- энергонезависимость данного оборудования.
Любой элеваторный узел требует обвязки. Нагретая вода движется по магистрали через трубопровод подачи. Ее возвращение происходит по обратному трубопроводу. От магистральных труб внутренняя система дома может отключаться благодаря задвижкам. Элементы теплового узла крепятся друг с другом фланцевым соединением.
Расчет элеваторного узла
Для проведения расчета элеваторного узла сначала вычисляют диаметр камеры смешивания и подбирают соответствующий номер элеватора. После этого высчитывают диаметр рабочего сопла.
Для расчетов пригодятся следующие формулы:
Расчет сечения инжекционной камеры ведется в сантиметрах. Для определения этого числа нужно знать расход нагретого теплоносителя в сети с учетом гидравлического сопротивления.
Это значение можно найти, используя приведенную в таблице формулу, где:
- Q – это объем тепловой энергии, измеряемый в ккал/ч, расходующейся на обогрев всего сооружения;
- Tсм – температура теплового носителя в выходном патрубке после элеваторного тройника;
- T2о – температура обратки;
- h – сопротивление водяного столба жидкости, которое измеряется в метрах (этот показатель учитывается в разводке всего контура, в том числе и в радиаторах).
По отдельной формуле рассчитывается диаметр узкой части сопла. Для этого нужно знать габариты инжекторной камеры в сантиметрах и коэффициент смешивания. По отдельной формуле находится коэффициент инжекции. Для расчета нам понадобится температура теплоносителя на входящем патрубке.
Когда мы будем знать напор на трубопроводе, идущем от магистрали централизованного отопления, можно вычислить диаметр сопла. Для этого необходимые параметры системы переводят в сантиметры.
После проведения расчетов мы получаем необходимые данные, на основании которых можно подобрать подходящую модель элеваторного узла и определить условия для его правильной и бесперебойной работы. Иными словами, мы можем определить необходимую производительность системы, зная объем циркулирующего теплоносителя, который прокачивается через элеватор за единицу времени, а также минимальный напор жидкости. Основными параметрами при выборе подходящей модели прибора является сечение горловины камеры смешивания и сопла элеватора.
Важно! Диаметр сопла округляем в меньшую сторону до сотых долей миллиметра. Но минимальное значение не может быть меньше трех миллиметров, потому что сопло быстро засорится
Элеватор что это такое
Чтобы понять и разобраться, что собой представляет этот элемент, лучше всего спуститься в подвал здания и посмотреть воочию. Но если у вас нет желания покидать ваш дом, то можно ознакомиться с фото и видео файлами в нашей галерее. В подвале среди множества задвижек, клапанов, трубопроводов, манометров и термометров вы обязательно найдете этот узел.
Предлагаем вначале разобраться в принципе работы. К зданию подводится горячий теплоноситель для систем отопления от районной котельной, и отводиться охлажденный.
Для этого требуются:
- Трубопровод подачи – выполняет поставку горячего теплоносителя к потребителю;
- Трубопровод обратки – выполняет работу по отводу охлажденного теплоносителя и возврата его в районную котельную.
Типовая схема элеваторного узла отопления
На несколько домов, а в некоторых случаях и на каждый, если дома большие, оборудуются тепловые камеры. В них происходит распределение теплоносителя между домами, а также установлена запорная арматура, которая служит для отсечения трубопроводов. Также в камерах могут выполняться дренажные приспособления, которые служат для опустошения труб, например, для ремонтных работ. Далее процесс зависит от температуры теплоносителя.
В нашей стране есть несколько основных режимов работы районных котельных:
- Подача 150 и обратка 70 градусов Цельсия;
- Соответственно 130 и 70;
- 95 и 70.
Выбор режима зависит от широт проживания. Так, например, для Москвы будет достаточно графика 130/70, а для Иркутска понадобится график 150/70. Названия этих режимов имеют числа максимальной нагрузки трубопроводов. Но в зависимости от температуры воздуха за окном, котельная может работать при температурах 70/54.
Узел в подвале
Делается это для того, чтобы не было перегрева в помещениях и чтобы в них было комфортно находиться. Выполняется эта регулировка на котельной и является представителем центрального типа регулировки. Интересным является тот факт, что в европейских странах выполняется другой тип регулировки – местный. То есть происходит регулировка на самом объекте теплоснабжения.
Тепловые сети и котельные в таком случаях работают по максимальному режиму. Стоит сказать, что наиболее высокая производительность котельных агрегатов достигается именно при максимальных нагрузках. Теплоноситель для систем отопления приходит к потребителю и уже по месту регулируется специальными механизмами.
Эти механизмы состоят из:
- Датчиков температуры наружного воздуха и внутреннего;
- Сервопривода;
- Исполнительного механизма с клапаном.
Такие системы оборудуются индивидуальными приборами для учета тепловой энергии, за счет этого достигается большая экономия денежных ресурсов. По сравнению с элеваторами такие системы менее надежны и долговечны.
Так вот, если теплоноситель имеет температуру не более 95 градусов, то главной задачей является качественное физическое распределения тепла по всей системе. Для достижения этих целей применяют коллекторы и балансировочные краны.
Грязевик для узла, который требует инструкция по эксплуатации
Но в том случае, когда температура выше 95 градусов, то её нужно немного уменьшить. Этим и занимаются элеваторы в системе отопления, они подмешивают к подающему трубопроводу охлажденную воду с обратного.
Функции и характеристики
Как мы уже с вами разобрались, элеватор системы отопления занимается охлаждением перегретой воды до заданной величины. Затем эта подготовленная вода поступает в батареи отопления в каждой квартире.
Этот элемент выполняет повышение качества работы всей системы здания и при правильном монтаже и подборе выполняет две функции:
- Смесительную;
- Циркуляционную.
Преимущества, которыми обладает элеваторная система отопления:
- Простота конструкции;
- Высокая эффективность;
- Не требуется подключение к электрическому току.
Недостатки:
- Нужен точный и качественный расчет и подбор элеватора отопления;
- Нет возможностей регулировать температуру на выходе;
- Нужно соблюдать перепад давления между подачей и обраткой в районе 0,8-2 бар.
В наше время такие элементы получили огромное распространение в хозяйстве тепловых сетей. Это обуславливается их преимуществами, такими как устойчивость к изменению гидравлических и температурных режимов. К тому же они не требуют постоянного присутствия человека.
Составляющие части
Конструкция
Элеватор состоит из:
- Камеры разрежения;
- Сопла;
- Струйного элеватора.
Среди теплотехников есть понятие как обвязка узла элеватора. Оно заключается в установке необходимой запорной арматуры, манометров и термометров. Все это в сборе и является узлом.
Приблизительные температуры
Как работает тепловой пункт с элеваторным узлом смешения
Элеваторные узлы смешения устанавливают в тепловых пунктах зданий, которые подключены к тепловой сети работающей в режиме с качественным регулированием на «перегретой» воде.
Качественное регулирование предполагает изменение температуры воды поступающей в систему отопления в зависимости от температуры наружного воздуха, при постоянном расходе воды циркулирующей в ней.
«Перегретой» вода считается, если она поступает из тепловой сети с температурой, превышающей необходимую для подачи в систему отопления.
Например, тепловая сеть может работать по графику 150/70, 130/70 или 110/70, а система отопления рассчитана на график 95/70. Температурный график 150/70 предполагает, что при расчётной температуре наружного воздуха (для Киева это -22°С) температура на вводе тепловых сетей в дом должна быть равной 150°C, а уйти в тепловую сеть должна с температурой 70°C, при этом в дом рассчитанный на график 95/70 эта вода должна попасть с температурой 95°C.
Элеваторный узел смешивает поток воды из подачи тепловой сети с температурой 150°C и поток воды вышедший из системы отопления с температурой 70°C, — в результате смешения на выходе из элеватора получается поток с температурой 95°C, который подаётся в систему отопления.
Как происходит смешение
В камере смешения элеваторного узла расположен конфузор «сопло / конус» разгоняющий поток перегретой воды. При повышении скорости потока давление в нём понижается (это свойство описано законом Бернулли) на столько, что становится несколько ниже давления в обратном трубопроводе. Разница давлений между камерой смешения и обратным трубопроводом приводит к перетеканию теплоносителя через перемычку «сапог элеватора» из обрата в подачу.
В камере смешения образуется смесь двух потоков с уже требуемой температурой, но давлением ниже давления обратного трубопровода. Смесь поступает в диффузор элеватора, в котором скорость потока понижается, а давление повышается над давлением обратного трубопровода. Повышение давления составляет не более 1,5 м.вод.ст, что и накладывает на элеваторные узлы ограничения в применении для систем отопления с высоким гидравлическим сопротивлением.
1 Дешёвый и простой
2 Не требует обслуживания
3 Не зависит от электрической сети
Недостатки элеваторных узлов смешения
1 Не совместим с автоматическими регуляторами, поэтому нормативно запрещена их совместная установка.
2 Создаёт располагаемый напор на вводе в систему отопления не более 1,5м.вод.ст., что исключает установку элеваторных тепловых пунктов в зданиях системы отопления которых оборудованы радиаторными термостатическими клапанами.
3 Элеваторный узел обладает постоянным коэффициентом смешения, что не позволяет подать в систему отопления теплоноситель необходимой температуры, при недогреве в тепловой сети.
4 Слишком высокая чувствительность к располагаемому напору на вводе тепловой сети. Снижение располагаемого напора относительно расчётного значения ведёт к снижению объёмного расхода воды циркулирующего в системе отопления, что в свою очередь приводит к разбалансировке системы и останове дальних стояков/ветвей.
5 Для работы элеватора разница давлений между подающим и обратным трубопроводом должна превышать 15 м.вод.ст.
Где установлены тепловые пункты с элеваторными узлами?
Практически все системы отопления введённые в эксплуатацию до 2000 года оборудованы тепловыми пунктами с элеваторными узлами.
Где можно применять элеваторные ИТП?
В настоящее время для всех проектируемых и реконструируемых жилых и административных зданий, обязательно применение автоматического регулирования в тепловом пункте. Применение же элеваторных узлов совместно с автоматическими регуляторами запрещено нормативно.
Элеваторные узлы могут устанавливаться лишь на объектах где нет необходимости в автоматическом управлении системой отопления, располагаемый напор (разница давлений между подающим и обратным трубопроводом) на вводе стабилен и превышает 15 м.вод.ст, для работы подключённой системы отопления достаточно перепада давлений между подачей и обратом в 1,5м.вод.ст, а система отопления работает с постоянным расходом и не оборудована автоматическими регуляторами.
Назначение
Прибор был создан с той же целью, что и многие аналогичные устройства – упростить и увеличить эффективность работы отопительной системы. В случае элеваторного узла, его главная задача состоит в том, чтобы при резких изменениях давления в трубах, например, в зимнее время, не происходило аварий. Конечно, элеватор требует определенного расчета, касательно длины трубопровода, объема теплоносителя, максимального уровня давления и т.п.
Установленный в систему отопления элеваторный узел обеспечивает:
- качественное разделение общего давления внутри системы;
- стабильную температуру теплоносителя.
За счет элеватора объем теплоносителя возможно увеличить до 2-х раз. Таким образом, в систему будет попадать одно количество жидкости, а протекать по трубам из котельной совсем другое (зачастую вдвое большее).
Также обязательным условием для качественной работы элеватора с теплоносителем является то, что жидкость должна находиться в полностью герметичной емкости. К тому же благодаря элеваторному узлу возможно полностью автоматизировать охлаждение теплоносителя до стабильной температуры (90-100 градусов по Цельсию). Тут же стоит сразу учесть то, что в расчет должны быть включены, как объем емкости, так и возможный предел давления.
Изначальный нагрев теплоносителя превышает 150 градусов по Цельсию. Из-за такого нагрева пропускать жидкость по трубам квартир нельзя по нескольким причинам:
- в квартирах, где в активной эксплуатации находятся чугунные радиаторы, подобные перепады температуры нанесут критичный вред приборам;
- во многих современных квартирах, по различным причинам, используются не металлические трубы, а пластиковые, чей температурный лимит ограничен – 100 градусов по Цельсию (в случае превышения лимита, трубы начинают протекать и, в итоге, выходят из строя);
- в том случае, если во всех квартирах все-таки установлены металлические трубы – их нагрев будет достигать более сотни градусов, отчего любое соприкосновение с легкостью оставит след в виде ожога.
Элеватор можно не устанавливать лишь в том случае, если температура входного теплоносителя изначально не превышает 90 градусов по Цельсию. В этом случае уровень нагрева теплоносителя всегда будет стабилен, а возможные перепады давления не смогут причинить значительного вреда каким-либо приборам системы.
Для того чтобы монтаж элеватора прошел без непредвиденных последствий, необходимо составить детальный расчет каждого предполагаемого действия. Справиться с такой задачей может только специалист и исключительно во время живой практики. Теоретического ознакомления здесь недостаточно.
Расчет и подбор элеватора по номеру
Сразу уточним порядок действий: первым делом рассчитывается диаметр смешивающей камеры и выбирается подходящий номер элеватора, затем определяется размер рабочего сопла. Диаметр инжекционной камеры (в сантиметрах) вычисляется по формуле:
Участвующий в формуле показатель Gпр – это реальный расход теплоносителя в системе многоквартирного дома с учетом ее гидравлического сопротивления. Величина рассчитывается так:
- Q – количество теплоты, расходуемое на обогрев здания, ккал/ч;
- Тсм – температура смеси на выходе из элеваторного тройника;
- Т2о – температура воды в обратной линии;
- h – сопротивление всей разводки отопления вместе с радиаторами, выраженное в метрах водного столба.
Справка. Чтобы вставить в формулу непонятные килокалории, нужно знакомые ватты умножить на коэффициент 0.86. Метры водного столба преобразуются в более распространенные единицы: 10.2 м вод. ст. = 1 Бар.
Пример подбора номера элеватора. Мы выяснили, что реальный расход Gпр составит 10 тонн смешанной воды за 1 час. Тогда диаметр смесительной камеры равен 0.874 √10 = 2.76 см. Логично взять смеситель №4 с камерой 30 мм.
Теперь выясняем диаметр узкой части сопла (в миллиметрах) по следующей формуле:
- Dr – определенный ранее размер инжекторной камеры, см;
- u – коэффициент смешивания;
- Gпр – наш расход готового теплоносителя на подаче в систему.
Хотя внешне формула кажется громоздкой, но в действительности расчеты не слишком сложные. Остается неизвестным один параметр – коэффициент инжекции, вычисляемый так:
Все обозначения из данной формулы мы расшифровали, кроме параметра Т1 – температуры горячей воды на входе в элеватор. Если предположить, что ее величина составляет 150 градусов, а температура подачи и обратки 90 и 70 °С соответственно, искомый размер Dc выйдет 8.5 мм (при расходе 10 т/ч воды).
Когда известна величина напора Нр на входе в элеватор со стороны централи, можно воспользоваться альтернативной формулой определения диаметра:
Замечание. Результат вычисления по последней формуле выражается в сантиметрах.
Как работает элеватор
Изучая схему элеваторного узла системы отопления, а именно то, что он собой представляет и как функционирует, нельзя не отметить схожесть готовой конструкции с водяными насосами. При этом для работы не требуется получение энергии из иных систем, а надежность можно будет наблюдать в конкретных ситуациях.
Основная часть приспособления с внешней стороны похожа на гидравлический тройник, установленный на обратке. Через простой тройник теплоноситель спокойно попадал бы в обратку, минуя радиаторы. Такая схема теплоузла была бы нецелесообразной.
В обычной схеме элеваторного узла отопительной системы имеются такие детали:
- Предварительная камера и подающая труба с установленным на конце соплом определенного сечения. Через нее подается теплоноситель из обратной ветки.
- На выходе встроен диффузор. Он предназначен для передачи воды к потребителям.
На данный момент можно встретить узлы, где сечение сопла корректируется электроприводом. Благодаря этому можно автоматически подстраивать приемлемую температуру теплоносителя.
Подбор схемы узла отопления с электроприводом делается исходя из того, чтобы можно было изменять коэффициент смешения теплоносителя в пределах 2-5 единиц. Этого нельзя будет добиться в элеваторах, в которых сечении сопла нельзя изменять. Получается, что системы с регулируемым соплом дают возможность в значительной степени сократить средства на отопление, что очень актуально в домах с центральными счетчиками.
Способы циркуляции воды в системах отопления
Движение жидкости по замкнутому контуру (контурам) может происходить в естественном или принудительном режиме. Вода, нагретая отопительным котлом, устремляется к батареям. Эту часть контура отопления называют прямым ходом (током). Попав в батареи, теплоноситель остывает, и направляется обратно в котел для нагрева. Этот промежуток замкнутого маршрута называют обратным ходом (током). Для ускорения циркуляции теплоносителя по контуру применяют специальные циркуляционные насосы, врезаемые в трубопровод на «обратке». Выпускаются модели отопительных котлов, в конструкции которых предусмотрено наличие подобного насоса.
Естественная циркуляция теплоносителя
При естественной циркуляции движение воды в системе идет «самотеком». Это возможно за счет физического эффекта, проявляющегося при изменении плотности воды. Горячая вода имеет меньший показатель плотности. Жидкость, идущая по обратному ходу, имеет большую плотность, а потому легко вытесняет уже нагревшуюся в котле воду. Горячий теплоноситель устремляется вверх по стояку, а далее распределяется по горизонтальным магистралям, проведенным под небольшим уклоном, составляющим не более 3-5 градусов. Наличие уклона и позволяет двигаться жидкости по трубам самотеком.
Схема отопления, основанная на естественной циркуляции теплоносителя, является самой простой, а потому ее легко реализовать на практике. К тому же в этом случае не требуется наличие других коммуникаций. Однако подходит этот вариант лишь для частных домов небольшой площади, так как длина контура ограничена 30 метрами. К недостаткам можно отнести и необходимость монтажа труб большего диаметра, а также низкое давление в системе.
Принудительная циркуляция теплоносителя
В автономных отопительных системах с принудительной циркуляцией воды (теплоносителя) по замкнутому контуру присутствует в обязательном порядке циркуляционный насос, который обеспечивает ускоренный ток нагретой воды к батареям, а остывшей – к нагревательному прибору. Движение воды возможно из-за разности давлений, возникающей между прямым и обратным током теплоносителя.
При монтаже данной системы не требуется соблюдать уклон магистрали трубопровода. В этом заключается преимущество, а вот существенный недостаток кроется в энергозависимости такой отопительной системы. Поэтому на случай отключения электричества в частном доме должен быть генератор (мини-электростанция), который обеспечит функционирование системы отопления в экстремальной ситуации.
Схему с принудительной циркуляцией воды в качестве теплоносителя можно использовать при монтаже отопления в доме любой площади. При этом выбирается насос подходящей мощности и обеспечивается его бесперебойное электропитание.
Недостатки
Элеватор не способен регулировать температуру воды, циркулирующей по системе между котлом и устройством непосредственно. Эту проблему можно решить двумя способами:
- Увеличить диаметр труб, что приведёт к полной перестройке системы отопления.
- Уменьшить нагревательную мощность котла, что может нарушить обогрев удалённых частей сооружения.
Оба варианта нежелательны, что говорит о несовершенстве узлов. Кроме того, для размещения устройства проводят тщательные расчёты. И также обязательно учитывают перепад давления между трубами подачи и возврата.
Важно! Из-за этих особенностей элеваторные узлы довольно редко используют в частных домах, для которых есть более эффективные решения
Элеватор водоструйный: конструкция и основные типы
Конструкция элеватора состоит из стальных труб соединенных между собой при помощи сварки в среде CO2. Внутри элеватора находится специальный стальной конус — сопло элеватора. В зависимости от проходного диаметра сопла, меняется и пропускная способность (производительность) элеватора.
|
Элеваторы отопления имеют восемь типовых моделей, которые обозначаются номерами от 0 до 7. Каждая модель имеет отличительные размерные характеристики и разницу в производительности (расход воды т/ч).
Технические характеристики и габаритные размеры водоструйных элеваторов
Обозначение | Диаметр горловины Ду, мм | Диаметр сопла, мм | Расход воды, т/ч | Масса, кг | Размеры, мм | Фланец 1 Ду | Фланец 2 Ду | Фланец 3 Ду | ||||
L | A | I | D | D1 | ||||||||
Элеватор №0 | 10 | 3 | 0,2-0,5 | 6,4 | 256 | 75 | 85 | 115 | 135 | 25 | 32 | 32 |
Элеватор №1 | 15 | 3 | 0,5-1 | 8,1 | 425 | 90 | 110 | 145 | 160 | 40 | 50 | 50 |
Элеватор №2 | 20 | 4 | 1-2 | 8,1 | 425 | 90 | 110 | 145 | 160 | 40 | 50 | 50 |
Элеватор №3 | 25 | 6 | 1-3 | 14,4 | 625 | 135 | 145 | 160 | 195 | 50 | 80 | 80 |
Элеватор №4 | 30 | 7 | 3-5 | 14,4 | 625 | 135 | 135 | 160 | 195 | 50 | 80 | 80 |
Элеватор №5 | 35 | 9 | 5-10 | 14,4 | 625 | 135 | 125 | 160 | 195 | 50 | 80 | 80 |
Элеватор №6 | 47 | 10 | 10-15 | 18 | 720 | 180 | 175 | 195 | 215 | 80 | 100 | 100 |
Элеватор №7 | 59 | 21 | 15-20 | 18 | 720 | 180 | 155 | 195 | 215 | 80 | 100 | 100 |
Гарантийный срок — 12 месяцев с момента ввода в эксплуатацию, но не более 18 месяцев с момента продажи.
В процессе изготовления каждый элеватор водоструйный подвергается гидравлическому испытанию на прочность сварных соединений при давлении 18 кгс/см2.
Габаритные размеры и характеристики сопла элеватора отопления
№ элеватора | dc, мм | d1, мм | d2, мм | L, мм |
3 | 32 | 25 | 85 | |
1 | 3 | 48 | 38 | 110 |
2 | 4 | 48 | 38 | 100 |
3 | 6 | 57 | 48 | 145 |
4 | 7 | 57 | 48 | 135 |
5 | 9 | 57 | 48 | 125 |
6 | 10 | 89 | 76 | 175 |
7 | 21 | 89 | 76 | 155 |
Размеры указаны справочно. Фактические размеры могут незначительно отличаться. Производитель оставляет за собой право вносить изменения в конструкцию элеватора, не указанные на данной странице.
Качество элеваторов ППК Свердловский подтверждено сертификатом соответствия ГОСТ Р. Каждое изделие поставляется в комплекте с паспортом.
Устройство и принцип работы элеватора отопления
В точке входа трубопровода тепловых сетей, обычно в подвале, в глаза бросается узел, который соединяет трубы подачи и «обратки». Это элеватор — смесительный узел для отопления дома. Изготовляется элеватор в виде чугунной или стальной конструкции снабженной тремя фланцами. Это обычный элеватор отопления принцип работы его основан на законах физики. Внутри элеватора находится сопло, приемная камера, смесительная горловина и диффузор. Приемная камера соединяется с «обраткой» с помощью фланца.
Перегретая вода поступает на вход элеватора и проходит в сопло. Вследствие сужения сопла скорость потока увеличивается, а давление уменьшается (закон Бернулли). В область пониженного давления подсасывается вода из «обратки» и смешивается в смесительной камере элеватора. Вода уменьшает температуру до нужного уровня и одновременно уменьшается давление. Элеватор работает одновременно как циркуляционный насос и смеситель. Таков вкратце принцип работы элеватора в системе отопления здания или сооружения.
Схема теплового узла
Регулировку подачи теплоносителя осуществляют узлы элеваторные отопления дома. Элеватор – основной элемент теплового узла, нуждается в обвязке. Регулировочное оборудование чувствительно к загрязнениям, поэтому в обвязку входят грязевые фильтры, которые подключаются к «подаче» и «обратке».
В обвязку элеватора входят:
- грязевые фильтры;
- манометры (на входе и выходе);
- термодатчики (термометры на входе элеватора, на выходе и на «обратке»);
- задвижки (для проведения профилактических или аварийных работ).
Это самый простой вариант схемы для регулировки температуры теплоносителя, но она часто используется как базовое устройство теплового узла. Базовый узел элеваторный отопления любых зданий и сооружений, обеспечивает регулировку температуры и давления теплоносителя в контуре.
Преимущества его применения для отопления больших объектов, домов и высоток:
- безотказность, благодаря простоте конструкции;
- низкая цена монтажа и комплектующих деталей;
- абсолютная энергонезависимость;
- существенная экономия потребления теплоносителя до 30%.
Но при наличии бесспорных преимуществ использования элеватора для систем отопления следует отметить и недостатки применения этого прибора:
- расчет делается индивидуально для каждой системы;
- нужен обязательный перепад давления в системе отопления объекта;
- если элеватор нерегулируемый, то невозможно изменить параметры контура отопления.
Элеватор с автоматической регулировкой
В настоящее время созданы конструкции элеваторов, в которых при помощи электронной регулировки можно изменять сечение сопла. В таком элеваторе имеется механизм, который перемещает дроссельную иглу. Она меняет просвет сопла и в результате меняется расход теплоносителя. Изменение просвета меняет скорость движения воды. В результате изменяется коэффициент смешивания горячей воды и воды из «обратки», чем достигается изменение температуры теплоносителя в «подаче». Теперь понятно, зачем в системе отопления нужно давление воды.
Элеватор регулирует подачу и давление теплоносителя, а его давление движет поток в контуре отопления.