Содержание
- Конструкция трехфазного трансформатора
- Что такое трансформатор? Классификация и устройство.
- 4.7. ВЕКТОРНАЯ ДИАГРАММА ТРАНСФОРМАТОРОВ
- Конструкция
- Особенности работы ТН в сетях с изолированной и заземленной нулевой точкой
- 4.8.ПОТЕРИ И КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ
- 4.5.ПРИВЕДЕННЫЙ ТРАНСФОРМАТОР
- Как расшифровать данные
- Группы соединений обмоток
- Возможные неисправности
- Схема работы при отключении одного из трансформаторов
- Трехобмоточные трансформаторы
- Обмотки трансформатора
- Принцип работы
- Расположение магнитной цепи
Конструкция трехфазного трансформатора
Ранее мы уже говорили, что трехфазный трансформатор представляет собой три взаимосвязанных однофазных трансформатора на одном многослойном сердечнике, и можно достичь значительной экономии в стоимости, размере и весе, объединив три обмотки в одну магнитную цепь, как показано на рисунке.
Трехфазный трансформатор обычно имеет три магнитных цепи, которые чередуются, чтобы обеспечить равномерное распределение диэлектрического потока между обмотками высокого и низкого напряжения. Исключением из этого правила является трехфазный трансформатор типа корпусной. В конструкции типа корпусной, даже несмотря на то, что три ядра находятся вместе, они не переплетены.
Трехфазный трансформатор с сердечником является наиболее распространенным методом построения трехфазного трансформатора, позволяя фазам быть магнитно связанными. Поток каждой конечности использует две другие ветви для своего обратного пути с тремя магнитными потоками в сердечнике, создаваемыми линейными напряжениями, различающимися по фазе времени на 120 градусов. Таким образом, поток в сердечнике остается почти синусоидальным, создавая синусоидальное вторичное напряжение питания.
Конструкция трехфазного трансформатора с кожухом пятиступенчатого типа тяжелее и дороже в сборке, чем сердечник. Пятиконтактные сердечники обычно используются для очень больших силовых трансформаторов, так как они могут быть выполнены с уменьшенной высотой. Материалы сердечника трансформаторов типа корпусной, электрические обмотки, стальной корпус и охлаждение практически такие же, как и для более крупных однофазных типов.
Что такое трансформатор? Классификация и устройство.
Трансформатором называется статический электромагнитный аппарат, предназначенный для преобразования электрической энергии переменного тока одного напряжения в электрическую энергию другого напряжения при неизменной частоте.
Во второй части статьи читайте про рабочие характеристики, потери и другую детальную информацию.
Трансформатор, как правило, состоит из стального замкнутого магнитопровода (сердечника) и двух или нескольких изолированных друг от друга обмоток, размещенных на сердечнике и электрически между собой не связанных (исключение составляют автотрансформаторы), клеммного щитка и корпуса (бака). Силовые трансформаторы мощностью свыше 20 кВ·А могут иметь масляное охлаждение, при котором сердечник с обмотками располагается в масляном баке.
Рис. 1 — Устройство трансформатора
По типу магнитопровода различают стержневые (рис. 1, а) и броневые (рис. 1, б) трансформаторы. Часть сердечника, которая соединяет между собой стержни и служит для замыкания магнитной цепи, называют ярмом. Пространство, ограниченное замкнутым сердечником и служащее для размещения обмотки, называют окном. Сердечник набирается (шихтуется) из изолированных листов специальной трансформаторной (электротехнической) стали толщиной 0,35 или 0,5 мм с малыми удельными потерями на гистерезис. Шихтовка сердечника позволяет в значительной степени уменьшить потери от вихревых токов.
По числу фаз трансформаторы делятся на однофазные, трехфазные и многофазные. В свою очередь однофазные трансформаторы могут быть двух- или многообмоточными.
Обмотки судового трансформатора изготовляются из медного провода круглого или прямоугольного поперечного сечения. По способу расположения на стержнях различают концентрические (рис. 1, а) и чередующиеся обмотки (рис. 1, б).
Обмотки, к которым энергия подводится от сети, называются первичными, другие, к которым подключаются потребители, называются вторичными. Аналогично все величины (число витков, напряжение, ток, мощность и др.), относящиеся к соответствующим обмоткам, называют первичными или вторичными и обозначают символами с цифрами (соответственно W1, U1, I1, P1 или W2, U2, I2, P2 и др.)
Если вторичное напряжение меньше первичного, то трансформатор называется понижающим, если больше — повышающим. При концентрической форме обмоток ближе к стержню располагают обмотки низкого напряжения (НН), затем — обмотки высокого напряжения (ВН) (рис. 1, а). По назначению трансформаторы разделяют на силовые и на специальные — сварочные, измерительные и т.п.
Все судовые трансформаторы имеют воздушное охлаждение и по исполнению делятся на водозащищенные (мощностью от 0,25 до 4,0 кВ·А при частоте 50 Гц и мощностью от 0,25 до 10 кВ·А при частоте 400 Гц), брызгозащищенные (от 6,3 до 100 кВ·А при 50 Гц и от 16 до 100 кВ·А при 400 Гц) и открытые (без защитного бака). К последним относятся однофазные трансформаторы мощностью 0,26, 0,63 и 1,0 кВ·А.
Защитный бак выполняют сварным из листовой стали. У трансформаторов водозащищенного исполнения он имеет цилиндрическую форму, у брызгозащищенного — прямоугольную. В баке предусмотрены сальники ввода кабелей и лапы для крепления трансформатора. На корпусе бака прикреплен заводской щиток, на котором приведены следующие данные:
— завод-изготовитель, год выпуска и заводской номер трансформатора;
— тип трансформатора;
— номинальная мощность, в киловольт-амперах, число фаз, номинальное напряжение обмоток при холостом ходе, частота тока;
— схема и группа соединения обмоток трансформатора, которые необходимы для правильного включения трансформаторов на параллельную работу;
— напряжение короткого замыкания Uк% (в процентах от номинального напряжения), КПД при номинальной нагрузке, полная масса, исполнение корпуса, номинальные токи обмоток;
— расположение контактных зажимов, их обозначение и принципиальная схема соединения обмоток.
Про принцип действия генератора постоянного тока читайте в нашей статье.
4.7. ВЕКТОРНАЯ ДИАГРАММА ТРАНСФОРМАТОРОВ
Построение векторной диаграммы удобнее начинать с вектора основного
потока Ф. Отложим его по оси абсцисс. Вектор I10 опережает его на угол a
. Далее строим векторы ЭДС Е1 и Е2‘, которые отстают от потока Ф на
90°. Для определения угла сдвига фаз между E2‘ и I2‘ следует знать характер
нагрузки. Предположим, она — активно-индуктивная. Тогда I2‘ отстает
от E2’ на угол f2.
Получилась так называемая заготовка векторной диаграммы (рис. 4.7.1.).
Для того чтобы достроить ее, необходимо воспользоваться тремя основными
уравнениями приведенного трансформатора.
Воспользуемся вторым основным уравнением:
и произведем сложение векторов.
Для этого к концу вектора E2‘ пристроим вектор — j I2‘ x2‘, а к его
концу — вектор — I2‘ r2‘. Результирующим вектором U2‘ будет вектор,
соединяющий начало координат с концом последнего вектора.
Теперь используем третье основное уравнение
из которого видно, что вектор тока I1 состоит из геометрической суммы
векторов I10 и — I2‘. Произведем это суммирование и достроим векторную
диаграмму.
Теперь вернемся к первому основному уравнению:
Чтобы построить вектор — Е1 , нужно взять вектор +Е1 и направить его
в противоположную сторону.
Теперь можно складывать с ним и другие векторы: + j I1 x1 и I1 r1 .
Первый будет идти перпендикулярно току, а второй — параллельно ему.
В результате получим суммарный вектор u1.
Построенная векторная диаграмма имеет общий характер. По этой же методике
можно осуществить ее построение как для различных режимов, так и для
разных характеров нагрузки.
Конструкция
Устройство трансформатора предполагает наличие одной либо большего числа отдельных катушек (ленточных или проволочных), находящихся под единым магнитным потоком, накрученных на сердечник, изготовленный из ферромагнетика.
Важнейшие конструктивные части следующие:
- обмотка;
- каркас;
- магнитопровод (сердечник);
- охлаждающая система;
- изоляционная система;
- дополнительные части, необходимые в защитных целях, для установки, обеспечения подхода к выводящим частям.
В приборах чаще всего можно увидеть обмотку двух типов: первичную, получающую электроток от стороннего питающего источника, и вторичную, с которой напряжение снимается.
Сердечник обеспечивает улучшенный обратный контакт обмоток, обладает пониженным сопротивлением магнитному потоку.
Некоторые виды приборов, работающие на сверхвысокой и высокой частоте, производятся без сердечника.
Производство приборов налажено в трех базовых концепциях обмоток:
- броневой;
- тороидальной;
- стержневой.
Устройство трансформаторов стержневых подразумевает накручивание обмотки на сердечник строго горизонтальное. В приборах броневого типа она заключена в магнитопроводе, размещается горизонтально либо вертикально.
Надежность, эксплуатационные особенности, устройство и принцип действия трансформатора принимаются без какого-либо влияния принципа его изготовления.
Особенности работы ТН в сетях с изолированной и заземленной нулевой точкой
Электрические высоковольтные сети имеют два исполнения: с изолированной нулевой шиной, либо с компенсированной и заземленной нейтралью. Первый режим подсоединения нулевой точки позволяет не отключать сеть при однофазных (ОЗ) или дуговых замыканиях (ДЗ). ПУЭ допускают работу линий с изолированной нейтралью до восьми часов при однофазном замыкании, но с оговоркой, что в это время ведутся работы по устранению неисправности.
Повреждение электрооборудования возможно из-за повышения фазного напряжения до линейного и последующего за этим появления дуги, носящей переменный характер. Независимо от причины возникновения и режима работы это наиболее опасный вид замыканий с большим коэффициентом перенапряжения. Именно в этом случае велика вероятность появления феррорезонанса в сети.
Феррорезонансный контур в силовых сетях с изолированной нейтралью представляет собой цепочку нулевой последовательности с нелинейным намагничиванием. Трехфазный не заземляемый ТН по сути – это три однофазных трансформатора, соединенные по схеме звезда-звезда. При перенапряжениях в зонах, где он установлен, индукция в его сердечнике увеличивается примерно в 1,73 раза, являясь причиной появления феррорезонанса.
Для защиты от этого явления разработаны особые методы:
- изготовление ТН и ТТ с низкой собственной индукцией;
- включение в их цепь дополнительных демпферных элементов;
- изготовление 3-хфазных трансформаторов с единой магнитной системой в 5-тистержневом исполнении;
- заземление нейтрального провода через токоограничивающий реактор;
- использование компенсационных обмоток и т.п.;
- применение релейных схем, защищающих обмотки ТН от сверхтоков.
Эти меры защищают измерительные ТН, но полностью не решают проблему безопасности. Помочь в этом могут заземляемые приборы, устанавливаемые в сетях с изолированной нейтральной шиной.
В ПУЭ приводится обоснование допустимости кратковременного заземления нейтрали небольшой индуктивностью обмотки ТН. Для этого в сети используется автоматика, которая силовыми контактами при возникновении ОЗ через 0,5 секунды ненадолго подключает трансформатор к сборным шинам. Благодаря эффекту глухозаземленной нейтрали при однофазном замыкании на землю в защитной цепи начинает течь ток, ограниченный индуктивностью ТН. Вместе с тем его величина достаточна для того, чтобы сработала аппаратура защиты от ОЗ и создала условия для гашения опасного дугового разряда.
4.8.ПОТЕРИ И КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ
В работающем трансформаторе всегда имеются как магнитные, так и электрические
потери. Магнитные потери слагаются из потерь на вихревые токи и гистерезис.
Величина этих потерь зависит от напряжения u1 и магнитной индукции
В. Можно считать, что при U1 = const, рон= В2. Они не зависят от нагрузки,
т.е. являются постоянными. Электрические потери в обмотках, наоборот,
переменные, т.е.:
где ркн — соответствует потерям при коротком замыкании трансформатора.
Если известны потери короткого замыкания при номинальной нагрузке, то
электрические потери можно определить по формуле:
где — коэффициент загрузки трансформатора.
Общие потери в трансформаторе:
КПД представляет собой отношение активной мощности Р2, отбираемой от
трансформатора, к активной модности Р1, подводимой к трансформатору:
Мощность Р2 подсчитывается по формуле:
где — номинальная
мощность, кВт.
Мощность
тогда КПД трансформатора
или
Как видно из последней формулы, величина К.П.Д. зависит от загрузки
трансформатора. Кроме того, К.П.Д. тем больше, чем выше cos f2. Максимальный
КПД соответствует такой загрузке, при которой магнитные потери равны
электрическим потерям:
Отсюда значение коэффициента загрузки, соответствующее максимальному
К.П.Д., равно:
Обычно К.П.Д. имеет максимальное значение при b=
0,5 — 0,6. Тогда h= 0,98 — 0,99.
4.5.ПРИВЕДЕННЫЙ ТРАНСФОРМАТОР
В общем случае параметры первичной обмотки трансформатора отличаются
от параметров вторичной обмотки. Разница наиболее ощутима при больших
коэффициентах трансформации, что затрудняет расчеты и (особенно) построение
векторных диаграмм. Векторы электрических величин, относящиеся к первичной
обмотке, значительно отличаются по своей длине от одноименных векторов
вторичной обмотки. Затруднения можно устранить, если привести все параметры
трансформатора к одинаковому числу витков, например, к w1. С этой целью
параметры вторичной обмотки пересчитываются на число витков w1.
Таким образом, вместо реального трансформатора с коэффициентом трансформации
получают эквивалентный
трансформатор с
Такой трансформатор называется приведенным. Приведение параметров
трансформатора не должно отразиться на его энергетическою процессе,
т.е. все мощности и фазы вторичной обмотки должны остаться такими же,
что и в реальном трансформаторе.
Так, например, если полная мощность вторичной обмотки реального трансформатора
то она должна быть
равна полной мощности вторичной обмотки приведенного трансформатора:
Используя ранее полученное выражение I 2‘ = I2 w2/w1,
напишем выражение для E2‘:

Приравняем теперь активные мощности вторичной обмотки:
Определим приведенное активное сопротивление:

по аналогии:
Уравнения ЭДС и токов для приведенного трансформатора теперь будут иметь вид:
Как расшифровать данные
Трансформаторы имеют обозначение в виде набора букв и цифр вида ХХХХХХ – 1234 / 1234 – Х1, где вместо литеры «Х» ставится определенная буква, которая по порядку показывает тип, количество фаз, сколько обмоток низшего напряжения, систему охлаждения и специальные обозначения для особых видов трансформаторов.
Не всегда в обозначении трансформатора буду присутствовать все буквы, их присутствие в маркировке зависит только от наличия этих характеристик.
Цифровые обозначения несут в себе основные характеристики трансформаторов: номинальная мощность, класс номинального напряжения обмотки ВН, а последние две цифры – год начала производства.
Тип
Если в начале условного обозначения будет стоять буква «А», то перед вами автотрансформатор. Если она отсутствует, то силовой трансформатор – повышающий или понижающий.
Для обозначения числа фаз используются буквы «Т» – трехфазный и «О» – однофазный.
Расщепленная обмотка
После этой буквы идет информация о расщепленной обмотке – «Р». Это означает, что на понижающем напряжении находятся две или три обмотки.
Отвод тепла
Система охлаждения обозначается следующими буквами:
- С – сухой трансформатор, то есть охлаждение воздушное;
- СЗ – то же самое, но в защищенном исполнении;
- СГ – герметичный с воздушным охлаждением;
- СД – воздушное охлаждение с помощью вентилятора;
- М – охлаждение масляное с естественной циркуляцией;
- Д – бак с маслом охлаждается с помощью вентилятора (дутье);
- Ц – принудительная циркуляция масла;
- ДЦ – комбинация двух способов охлаждения: обдув и циркуляция.
Число обмоток
После системы охлаждения может стоять буква «Т», которая обозначает трехобмоточный трансформатор. Интересно, что двухобмоточный условного обозначения не имеет.
Регулировка напряжения под нагрузкой
В случае, когда количество витков на трансформаторе можно изменять без разъединения электрической цепи, то в этом случае это означает, что регулирование напряжения может происходить под нагрузкой и маркируется буквой «Н». При регулировке с выключением – переключение без возбуждения – буква отсутствует.
Исполнение
Существуют устройства с особыми конструкционными решениями. Подвесные трансформаторы обозначаются буквой «П», с литой изоляцией – «Л», энергосберегающие прописываются буквой «Э», а усовершенствованные – буквой «У».
Назначение
В зависимости от сферы применения, в конце маркировки может стоять литера, дающая об этом информацию. Для работы на самой электростанции – «С», при использовании на железных дорогах – «Ж», на металлургических предприятиях – «М».
Особые обозначения
Существуют отдельные категории трансформаторов, для которых применяются другие обозначения. В частности, это трансформаторы тока и напряжения. Тип сразу указывается в начале буквенного кода: «Т» для первого вида и «Н» для второго. Далее следует информация о способе установки: «П» для проходных, «О» для опорных и «Ш» для шинных. Изоляция также обозначается специальными буквами: «Л» – для литой изоляции, «Ф» – для фарфоровой и «В» – для встроенного изолятора.
Цифры
Цифровая маркировка дает только самые основные характеристики трансформатора. Следующие через тире цифры сразу же после букв – это номинальная мощность в киловольт-амперах (кВА). Затем через наклонную черту указывается мощность обмотки, а для автотрансформаторов еще через один слэш – класс напряжения обмотки. После этого указывается климатическое исполнение, то есть условия местности, в которых может эксплуатироваться данный экземпляр («У» – для умеренных зон, «Х» – для холодных и так далее) и тип его размещения – на открытом воздухе или внутри помещения. В некоторых случаях через тире указывается год выпуска или начала производства устройств данной конструкции.
Группы соединений обмоток
Для включения трансформатора на параллельную работу с другими трансформаторами имеет значение сдвиг фаз между э. д. с. первичной и вторичной обмоток. Для характеристики этого сдвига вводится понятие о группе соединений обмоток.
Рисунок 2. Группы соединений однофазного трансформатора |
На рисунке 2, а показаны обмотки однофазного трансформатора, намотанные по левой винтовой линии и называемые поэтому «левыми», причем у обеих обмоток начала A, a находятся сверху, а концы X, x – снизу. Будем считать э. д. с. положительной, если она действует от конца обмотки к ее началу. Обмотки на рисунке 2, а сцепляются с одним и тем же потоком. Вследствие этого э. д. с. этих обмоток в каждый момент времени действуют в одинаковых направлениях – от концов к началам или наоборот, то есть они одновременно положительны или отрицательны. Поэтому э. д. с. EA и Ea совпадают по фазе, как показано на рисунке 2, а. Если же у одной из обмоток переменить начало и конец (рисунок 2, б), то направление ее э. д. с., действующей от конца к началу, изменится на обратное и э. д. с. EA и Ea будут иметь сдвиг 180°. Такой же результат получится, если на рисунке 2, а одну из обмоток выполнит «правой».
Для обозначения сдвига фаз обмоток трансформатора векторы их линейных э. д. с. уподобляют стрелкам часового циферблата, причем вектор обмотки ВН принимают за минутную стрелку и считают, что на циферблате часов она направлена на цифру 12, а вектор обмотки НН принимают за часовую стрелку. Тогда на рисунке 2, а часы будут показывать 0 или 12 часов, и такое соединение обмоток поэтому называется группой 0 (ранее в этом случае применялось название «группа 12»). На рисунке 2, б часы будут показывать 6 часов, и такое соединение называется группой 6. Соответственно соединение обмоток однофазных трансформаторов согласно рисунку 2, а обозначается I/I-0, а согласно рисунку 2, б – I/I-6. В России стандартизированы и изготовляются однофазные трансформаторы только соединением I/I-0.
Рисунок 3. Трехфазный трансформатор со схемой и группой соединений Y/Y-0 |
Рассмотрим теперь трехфазный трансформатор с соединением обмоток ВН и НН в звезду, причем предположим, что 1) обмотки ВН и НН имеют одинаковую намотку (например, «правую»); 2) начала и концы обмоток расположены одинаково (например, концы снизу, а начала сверху); и 3) одноименные обмотки (например, A и a, а также B и b, C и c) находятся на общих стержнях (рисунок 3, а). Тогда звезды фазных э. д. с. и треугольники линейных э. д. с. будут иметь вид, показанный на рисунке 3, б. При этом одноименные векторы линейных э. д. с. (например, EAB и Eab) направлены одинаково, то есть совпадают по фазе, и при расположении их на циферблате часов, согласно изложенному правилу, часы будут показывать 0 часов (рисунок 3, в). Поэтому схема и группа соединений такого трансформатора обозначается Y/Y-0.
Если на рисунке 3, а произвести круговую перемаркировку (или перестановку) фаз обмотки НН и разместить фазу a на среднем стержне, фазу b – на правом и c – на левом, то на векторной диаграмме НН (рисунок 3, б) произойдет круговая перестановка букв a, b, c по часовой стрелке. При этом получится группа соединений 4, а при обратной круговой перестановке будет группа соединений 8. Если переменить местами начала и концы обмоток, то получатся еще группы соединений 6, 10 и 2. Значит, при соединении по схеме Y/Y возможно шесть групп соединений, причем все они четные. Такие же группы соединений можно получить при схеме соединений Δ/Δ.
Рисунок 4. Трехфазный трансформатор со схемой и группой соединений Y/Δ-11 |
Допустим теперь, что обмотки соединены по схеме Y/Δ, как показано на рисунке 4, а, и соблюдены те же условия, которые были оговорены для рисунка 3, а. Тогда векторные диаграммы э. д. с. обмоток ВН и НН будут иметь вид, показанный на рисунке 4, б. При этом одноименные линейные э. д. с. (напрмер, EAB и Eab) будут сдвинуты на 30° и расположатся на циферблате часов, как показано на рисунке 4, в. Соединение обмоток такого трансформатора обозначаются Y/Δ-11. При круговых перестановках фаз и при перемаркировке начал и концов одной из обмоток (или при установке вместо перемычек ay, bz, cx в треугольнике на рисунке 4, а перемычек az, bx, cy) можно получить также другие нечетные группы: 1, 3, 5, 7 и 9.
Большой разнобой в схемах и группах соединений изготовляемых трансформаторов нежелателен. Поэтому ГОСТ 11677-85,»Трансформаторы силовые. Общие технические условия», предусматривает изготовление трехфазных силовых трансформаторов со следующими группами соединений обмоток: Y/Y0-0, Y0/Y-0, Y/Δ-11, Y0/Δ-11, Y/Z0-11, Δ/Y0-11, и Δ /Δ-0. При этом первым обозначено соединение обмотки ВН, вторым – соединение обмотки НН, а индекс «0» указывает на то, что наружу выводится нулевая точка обмотки.
Возможные неисправности
Указанные устройства чаще всего выходят из строя в результате повреждения изоляции, вызванного перегревом, непредусмотренным механическим воздействием или ошибкой при сборке.
Чтобы проверить состояние прибора, измеряют сопротивление межвитковой изоляции. Если она меньше установленного значения, оборудование нуждается в замене или ремонте.
Также для диагностики используются специальные приборы – тепловизоры, позволяющие проверить состояние всей действующей схемы. Наиболее сложные диагностические процедуры производятся в лабораторных условиях. Своевременная диагностика позволяет исключить аварийные ситуации и обеспечить нормальную работу устройств.
Схема работы при отключении одного из трансформаторов
В случае отключении на подстанции трансформатора, присоединенного к шинам питающих проводов, будем иметь практически рассмотренную на рисунке схему с повышающими автотрансформаторами, роль которых выполняют ближайшие к подстанции автотрансформаторы на фидерных зонах.
При этом на участках от подстанции до ближайших к ней автотрансформаторов имеем систему 25 кВ, а на большей части обеих фидерных зон сохраняется система 2×25 кВ. Поскольку сопротивления участков при системе 25 кВ больше, чем их же сопротивление при системе 2×25 кВ, большую нагрузку принимают на себя соседние подстанции.
В случае отключения на подстанции трансформатора, присоединенного к шинам контактной сети, ближайшие к подстанции автотрансформаторы будут работать в трансформаторном режиме и при значительных размерах движения или при тяжелых поездах могут перегружаться.
Схема работы при отключении одного из трансформаторов.
Избежать этого можно или переходом на время отключения указанного трансформатора к одностороннему питанию фидерных зон от соседних подстанций или путем приведения группы соединения работоспособного трансформатора в соответствие с группой отключенного трансформатора и подключением его к шинам контактной сети.
Для этого следует предусмотреть возможность оперативного переключения двух фаз на первичной стороне трансформатора, подключенного в нормальном режиме к шинам питающих проводов.
При необходимости иметь большую степень резервирования трансформаторов можно, как и в случае с однофазными трансформаторами, в качестве резервного использовать третий трехфазный трансформатор с возможностью подключения его к шинам 110 (220) кВ и к шинам контактной сети или питающего провода вместо любого выведенного из работы трансформатора.
Рассмотренные схемы подстанций с трехфазными трансформаторами имеют перспективу на дорогах стран СНГ в местах стыкования систем 25 и 2×25 кВ и на тяговых подстанциях при необходимости питать от них большую районную нагрузку, а также при усилении системы электроснабжения ранее электрифицированных линий.
Трехобмоточные трансформаторы
В трехобмоточном трансформаторе на каждую трансформируемую фазу приходится три обмотки. За номинальную мощность такого трансформатора принимают номинальную мощность наиболее нагружаемой его обмотки. Токи, напряжения и сопротивления других обмоток приводят к числу витков этой, наиболее мощной обмотки. Принцип работы трехобмоточного трансформатора по существу не отличается от принципа работы обычного двухобмоточного трансформатора.
Существуют трехобмоточные трансформаторы с одной первичной и двумя вторичными обмотками и трансформаторы с двумя первичными и одной вторичной обмотками.
Рассмотрим основные уравнения, особенности работы и область применения трехобмоточного трансформатора с одной первичной обмоткой, имеющего наибольшее распространение (рис. 3.1, а).
Первичная (наиболее мощная) обмотка этого трансформатора является намагничивающей и создает в магнитопроводе магнитный поток, который сцепляется с двумя вторичными обмотками и наводит в них ЭДС и. Аналогично двухобмоточному трансформатору запишем для трехобмоточного трансформатора уравнение МДС:
Разделив (3.1) на w
1, получим уравнения токов:
Здесь k12=w1/w2
— коэффициент трансформации между обмотками w1 и w2;k13 = w1/w3 — коэффициент трансформации между обмоткамиw1 и w3.
Пренебрегая током х.х. I0, получим упрощенное уравнение токов трехобмоточного трансформатора:
(3.4)
Экономическую целесообразность применения трехобмоточных трансформаторов можно объяснить тем, что, как это следует из (3.4), первичный ток трехобмоточного трансформатора равен не арифметической, а геометрической сумме приведенных вторичных токов. Учитывая это равенство, а также и то, что нагрузка на вторичные обмотки достигает номинального значения не одновременно, первичную обмотку трехобмоточного трансформатора рассчитывают на мощность, меньшую арифметической суммы номинальных мощностей обеих вторичных обмоток. Еще одно достоинство трехобмоточного трансформатора состоит в том, что он фактически заменяет два двухобмоточных.
Рис. 3.1. Трехобмоточный траисформатор с одной первичной и двумя вторичными обмотками
Обмотки трехобмоточиого трансформатора располагают на стержне обычно концентрически (рис. 3.1, б),
при этом целесообразнее двустороннее расположение вторичных обмоток относительно первичной, тогда первичной является обмотка 2, а вторичными — обмотки1 и3. В этом случае взаимное влияние вторичных обмоток заметно ослабевает.
На крупных электростанциях иногда применяют трехобмоточные трансформаторы с двумя первичными обмотками (к каждой из них подключается генератор) и одной вторичной (от нее отходит линия электропередачи). Обычно это установки большой мощности, а поэтому в них применяют однофазные трехобмоточные трансформаторы, соединенные в трансформаторную группу (см. рис. 1.20, а).
Обмотки трансформатора
Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.
Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.
У самого простого однофазного трансформатора можно увидеть две такие обмотки.
Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют «первичка». Обмотка, с которой уже снимают напряжение называется вторичной или «вторичка».
Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.
I/P: 220М50Hz (RED-RED) — это говорит нам о том, что два красных провода — это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P — значит InPut, что в переводе «входной».
O/P: 12V 0,4A (BLACK, BLACK) — вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор — это 0,4 Ампера или 400 мА.
Принцип работы
Схема работы силового трансформатора выглядит так:
- Ток подается на первичную обмотку.
- Первичная обмотка в результате прохождения электрического тока начинает генерировать переменное магнитное поле.
- Магнитное поле, проходящее сквозь вторичную обмотку, вызывает в ней электрический ток.
Вес секрет процесса в количестве витков. Отношение принятого напряжения к отданному равняется отношению количества витков первичной обмотки к количеству витков вторичного обмотки. Это же отношение называют коэффициентом трансформации. То есть коэффициент показывает, во сколько раз уменьшится или увеличится выходное напряжение на подстанции.
Схема простейшего трансформатора
Расположение магнитной цепи
Стержневые трехфазные трансформаторы подразделяются на трансформаторы с симметричной магнитной цепью и трансформаторы с несимметричной магнитной цепью. Расположение стержней в одной плоскости приводит к тому, что магнитное сопротивление для потока средней фазы меньше, нежели для потоков крайних фаз.
Действительно магнитные потоки крайних фаз проходят по несколько более длинным путям, чем поток средней фазы. Кроме того, поток крайних фаз, выйдя из своих стержней, проходит в одной половине ярма полностью, и только в другой половине (после ответвления в средний стержень) проходит его половина. Поток же средней фазы по выходе из вертикального стержня тотчас же разветвляется на две половины, и потому в обеих частях ярма проходит лишь половина потока средней фазы.
Таким образом потоки крайних фаз насыщают ярмо в большей степени, чем поток средней фазы, а потому магнитное сопротивление для потоков крайних фаз больше, чем для потока средней фазы.
Следствием неравенства магнитных сопротивлений для потоков разных фаз трехфазного трансформатора является неравенство токов холостой работы в отдельных фазах при одном и том же фазном напряжении. Однако при небольшой насыщенности железа ярма и хорошей сборке железа стержней это неравенство токов незначительно.
Так как конструкция трансформаторов с несимметричной магнитной цепью значительно проще, чем трансформатора с симметричной магнитной цепью, то первые трансформаторы и нашли себе преимущественное применение. Трансформаторы с симметричною магнитною цепью встречаются редко.
Будет интересно Чем отличаются трансформаторы напряжения от трансформаторов тока
Основные виды устройства
Основную группу трехфазных трансформаторов составляют броневые трансформаторы. Броневой трехфазный трансформатор можно рассматривать как бы состоящим из трех однофазных броневых трансформаторов, приставленных один к другому своими ярмами. Он может быть разбит на три однофазных броневых трансформатора, магнитные потоки которых могут замыкаться каждый по своей магнитной цепи.
У стержневых трансформаторов обмотки почти целиком открыты и потому более доступны для осмотра и ремонта, а также и для охлаждающей среды. Есть ряд преимуществ и недостатков, по которым выбирают тип трансформатора.
Плюсы и минусы броневых трансформаторов перед стержневыми трансформаторами.
Устройства коммутируются по различным схемам соединения обмоток. Групповые трехфазные трансформаторы применяются при наличии очень больших мощностей, от 630кВА на каждую фазу.
Использование при таких условиях группового трансформатора целесообразно потому, что габариты и масса изделия существенно меньше аналогичного агрегата, работающего на общую мощность группы.
Тем более что при использовании одиночного трансформатора для обладания резервной мощностью приходится устанавливать еще один подобный прибор, а в групповом трансформаторе в качестве резервного можно задействовать один из трех однофазных.
Этим и обуславливается выбор групповых трансформаторов для озвученных целей, несмотря на то что они по сравнению с одиночными аналогами имеют меньший КПД, большие габариты и несколько дороже.